Mechanistic Strategies for Catalysis Adopted by Evolutionary Distinct Family 43 Arabinanases
Arabinanases (ABNs, EC 3.2.1.99) are promising catalysts for environmentally friendly biomass conversion into energy and chemicals. These enzymes catalyze the hydrolysis of the α-1,5-linked l-arabinofuranoside backbone of plant cell wall arabinans releasing arabino-oligosaccharides and arabinose, th...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2014-03, Vol.289 (11), p.7362-7373 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7373 |
---|---|
container_issue | 11 |
container_start_page | 7362 |
container_title | The Journal of biological chemistry |
container_volume | 289 |
creator | Santos, Camila R. Polo, Carla C. Costa, Maria C.M.F. Nascimento, Andrey F.Z. Meza, Andreia N. Cota, Junio Hoffmam, Zaira B. Honorato, Rodrigo V. Oliveira, Paulo S.L. Goldman, Gustavo H. Gilbert, Harry J. Prade, Rolf A. Ruller, Roberto Squina, Fabio M. Wong, Dominic W.S. Murakami, Mário T. |
description | Arabinanases (ABNs, EC 3.2.1.99) are promising catalysts for environmentally friendly biomass conversion into energy and chemicals. These enzymes catalyze the hydrolysis of the α-1,5-linked l-arabinofuranoside backbone of plant cell wall arabinans releasing arabino-oligosaccharides and arabinose, the second most abundant pentose in nature. In this work, new findings about the molecular mechanisms governing activation, functional differentiation, and catalysis of GH43 ABNs are presented. Biophysical, mutational, and biochemical studies with the hyperthermostable two-domain endo-acting ABN from Thermotoga petrophila (TpABN) revealed how some GH43 ABNs are activated by calcium ions via hyperpolarization of the catalytically relevant histidine and the importance of the ancillary domain for catalysis and conformational stability. On the other hand, the two GH43 ABNs from rumen metagenome, ARN2 and ARN3, presented a calcium-independent mechanism in which sodium is the most likely substituent for calcium ions. The crystal structure of the two-domain endo-acting ARN2 showed that its ability to efficiently degrade branched substrates is due to a larger catalytic interface with higher accessibility than that observed in other ABNs with preference for linear arabinan. Moreover, crystallographic characterization of the single-domain exo-acting ARN3 indicated that its cleavage pattern producing arabinose is associated with the chemical recognition of the reducing end of the substrate imposed by steric impediments at the aglycone-binding site. By structure-guided rational design, ARN3 was converted into a classical endo enzyme, confirming the role of the extended Arg203–Ala230 loop in determining its action mode. These results reveal novel molecular aspects concerning the functioning of GH43 ABNs and provide new strategies for arabinan degradation.
Background: Arabinanases are key enzymes involved in hemicellulose degradation.
Results: Crystallographic, mutational, and biochemical assays of three arabinanases reveal the molecular mechanisms governing their catalysis and activation.
Conclusion: Accessory domain and metal ion are essential for catalysis. Structural adaptations in the catalytic interface confer unique action modes to ruminal arabinanases.
Significance: This work provides new molecular strategies for arabinan hydrolysis. |
doi_str_mv | 10.1074/jbc.M113.537167 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3953252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820442449</els_id><sourcerecordid>24469445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-d0c117711ea65eeb0f5b3d7f6237431a7e0e074e2ea96bf754a69365577527a43</originalsourceid><addsrcrecordid>eNp1kEFPAjEQhRujEUTP3kz_wEK7bbfsxYQgqAnEg5p4MGm63VkoWXZJW0j495agRA_2Moe-92beh9AtJX1KJB-sCtOfU8r6gkmayTPUpWTIEiboxznqEpLSJE_FsIOuvF-R-HhOL1En5TzLORdd9DkHs9SN9cEa_BqcDrCw4HHVOjzWQdd7bz0ele0mQImLPZ7s2nobbNtot8cPB19jAp7qta33mDM8crqwjW60B3-NLipde7j5nj30Pp28jZ-S2cvj83g0SwznLCQlMZRKSSnoTAAUpBIFK2WVpUxyRrUEArEspKDzrKik4DrLWSaElCKVmrMeuj_mbrbFGkoDTSxSq42z63ilarVVf38au1SLdqdYLlgq0hgwOAYY13rvoDp5KVEH0CqCVgfQ6gg6Ou5-rzzpf8hGQX4UQCy-s-CUNxYaA6V1YIIqW_tv-BcdP46j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanistic Strategies for Catalysis Adopted by Evolutionary Distinct Family 43 Arabinanases</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Santos, Camila R. ; Polo, Carla C. ; Costa, Maria C.M.F. ; Nascimento, Andrey F.Z. ; Meza, Andreia N. ; Cota, Junio ; Hoffmam, Zaira B. ; Honorato, Rodrigo V. ; Oliveira, Paulo S.L. ; Goldman, Gustavo H. ; Gilbert, Harry J. ; Prade, Rolf A. ; Ruller, Roberto ; Squina, Fabio M. ; Wong, Dominic W.S. ; Murakami, Mário T.</creator><creatorcontrib>Santos, Camila R. ; Polo, Carla C. ; Costa, Maria C.M.F. ; Nascimento, Andrey F.Z. ; Meza, Andreia N. ; Cota, Junio ; Hoffmam, Zaira B. ; Honorato, Rodrigo V. ; Oliveira, Paulo S.L. ; Goldman, Gustavo H. ; Gilbert, Harry J. ; Prade, Rolf A. ; Ruller, Roberto ; Squina, Fabio M. ; Wong, Dominic W.S. ; Murakami, Mário T.</creatorcontrib><description>Arabinanases (ABNs, EC 3.2.1.99) are promising catalysts for environmentally friendly biomass conversion into energy and chemicals. These enzymes catalyze the hydrolysis of the α-1,5-linked l-arabinofuranoside backbone of plant cell wall arabinans releasing arabino-oligosaccharides and arabinose, the second most abundant pentose in nature. In this work, new findings about the molecular mechanisms governing activation, functional differentiation, and catalysis of GH43 ABNs are presented. Biophysical, mutational, and biochemical studies with the hyperthermostable two-domain endo-acting ABN from Thermotoga petrophila (TpABN) revealed how some GH43 ABNs are activated by calcium ions via hyperpolarization of the catalytically relevant histidine and the importance of the ancillary domain for catalysis and conformational stability. On the other hand, the two GH43 ABNs from rumen metagenome, ARN2 and ARN3, presented a calcium-independent mechanism in which sodium is the most likely substituent for calcium ions. The crystal structure of the two-domain endo-acting ARN2 showed that its ability to efficiently degrade branched substrates is due to a larger catalytic interface with higher accessibility than that observed in other ABNs with preference for linear arabinan. Moreover, crystallographic characterization of the single-domain exo-acting ARN3 indicated that its cleavage pattern producing arabinose is associated with the chemical recognition of the reducing end of the substrate imposed by steric impediments at the aglycone-binding site. By structure-guided rational design, ARN3 was converted into a classical endo enzyme, confirming the role of the extended Arg203–Ala230 loop in determining its action mode. These results reveal novel molecular aspects concerning the functioning of GH43 ABNs and provide new strategies for arabinan degradation.
Background: Arabinanases are key enzymes involved in hemicellulose degradation.
Results: Crystallographic, mutational, and biochemical assays of three arabinanases reveal the molecular mechanisms governing their catalysis and activation.
Conclusion: Accessory domain and metal ion are essential for catalysis. Structural adaptations in the catalytic interface confer unique action modes to ruminal arabinanases.
Significance: This work provides new molecular strategies for arabinan hydrolysis.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M113.537167</identifier><identifier>PMID: 24469445</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Accessory Domain ; Activation Mechanism ; Amino Acid Sequence ; Animals ; Arabinanase ; Arabinose - chemistry ; Bacterial Proteins - metabolism ; Binding Sites ; Biotechnology ; Calcium - chemistry ; Catalysis ; Cattle ; Cloning, Molecular ; Crystallography, X-Ray ; DNA Mutational Analysis ; Endo/Exo Activities ; Enzyme Kinetics ; Enzymology ; GH43 Family ; Glycoside Hydrolases ; Glycoside Hydrolases - metabolism ; Gram-Negative Anaerobic Straight, Curved, and Helical Rods - enzymology ; Hydrolysis ; Ions - chemistry ; Kinetics ; Ligands ; Metagenome ; Metals - chemistry ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Protein Chimeras ; Protein Engineering ; Protein Structure ; Protein Structure, Tertiary ; Rumen - microbiology ; Sequence Homology, Amino Acid ; Solvents - chemistry</subject><ispartof>The Journal of biological chemistry, 2014-03, Vol.289 (11), p.7362-7373</ispartof><rights>2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-d0c117711ea65eeb0f5b3d7f6237431a7e0e074e2ea96bf754a69365577527a43</citedby><cites>FETCH-LOGICAL-c443t-d0c117711ea65eeb0f5b3d7f6237431a7e0e074e2ea96bf754a69365577527a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953252/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953252/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24469445$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santos, Camila R.</creatorcontrib><creatorcontrib>Polo, Carla C.</creatorcontrib><creatorcontrib>Costa, Maria C.M.F.</creatorcontrib><creatorcontrib>Nascimento, Andrey F.Z.</creatorcontrib><creatorcontrib>Meza, Andreia N.</creatorcontrib><creatorcontrib>Cota, Junio</creatorcontrib><creatorcontrib>Hoffmam, Zaira B.</creatorcontrib><creatorcontrib>Honorato, Rodrigo V.</creatorcontrib><creatorcontrib>Oliveira, Paulo S.L.</creatorcontrib><creatorcontrib>Goldman, Gustavo H.</creatorcontrib><creatorcontrib>Gilbert, Harry J.</creatorcontrib><creatorcontrib>Prade, Rolf A.</creatorcontrib><creatorcontrib>Ruller, Roberto</creatorcontrib><creatorcontrib>Squina, Fabio M.</creatorcontrib><creatorcontrib>Wong, Dominic W.S.</creatorcontrib><creatorcontrib>Murakami, Mário T.</creatorcontrib><title>Mechanistic Strategies for Catalysis Adopted by Evolutionary Distinct Family 43 Arabinanases</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Arabinanases (ABNs, EC 3.2.1.99) are promising catalysts for environmentally friendly biomass conversion into energy and chemicals. These enzymes catalyze the hydrolysis of the α-1,5-linked l-arabinofuranoside backbone of plant cell wall arabinans releasing arabino-oligosaccharides and arabinose, the second most abundant pentose in nature. In this work, new findings about the molecular mechanisms governing activation, functional differentiation, and catalysis of GH43 ABNs are presented. Biophysical, mutational, and biochemical studies with the hyperthermostable two-domain endo-acting ABN from Thermotoga petrophila (TpABN) revealed how some GH43 ABNs are activated by calcium ions via hyperpolarization of the catalytically relevant histidine and the importance of the ancillary domain for catalysis and conformational stability. On the other hand, the two GH43 ABNs from rumen metagenome, ARN2 and ARN3, presented a calcium-independent mechanism in which sodium is the most likely substituent for calcium ions. The crystal structure of the two-domain endo-acting ARN2 showed that its ability to efficiently degrade branched substrates is due to a larger catalytic interface with higher accessibility than that observed in other ABNs with preference for linear arabinan. Moreover, crystallographic characterization of the single-domain exo-acting ARN3 indicated that its cleavage pattern producing arabinose is associated with the chemical recognition of the reducing end of the substrate imposed by steric impediments at the aglycone-binding site. By structure-guided rational design, ARN3 was converted into a classical endo enzyme, confirming the role of the extended Arg203–Ala230 loop in determining its action mode. These results reveal novel molecular aspects concerning the functioning of GH43 ABNs and provide new strategies for arabinan degradation.
Background: Arabinanases are key enzymes involved in hemicellulose degradation.
Results: Crystallographic, mutational, and biochemical assays of three arabinanases reveal the molecular mechanisms governing their catalysis and activation.
Conclusion: Accessory domain and metal ion are essential for catalysis. Structural adaptations in the catalytic interface confer unique action modes to ruminal arabinanases.
Significance: This work provides new molecular strategies for arabinan hydrolysis.</description><subject>Accessory Domain</subject><subject>Activation Mechanism</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Arabinanase</subject><subject>Arabinose - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites</subject><subject>Biotechnology</subject><subject>Calcium - chemistry</subject><subject>Catalysis</subject><subject>Cattle</subject><subject>Cloning, Molecular</subject><subject>Crystallography, X-Ray</subject><subject>DNA Mutational Analysis</subject><subject>Endo/Exo Activities</subject><subject>Enzyme Kinetics</subject><subject>Enzymology</subject><subject>GH43 Family</subject><subject>Glycoside Hydrolases</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Gram-Negative Anaerobic Straight, Curved, and Helical Rods - enzymology</subject><subject>Hydrolysis</subject><subject>Ions - chemistry</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Metagenome</subject><subject>Metals - chemistry</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Protein Chimeras</subject><subject>Protein Engineering</subject><subject>Protein Structure</subject><subject>Protein Structure, Tertiary</subject><subject>Rumen - microbiology</subject><subject>Sequence Homology, Amino Acid</subject><subject>Solvents - chemistry</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEFPAjEQhRujEUTP3kz_wEK7bbfsxYQgqAnEg5p4MGm63VkoWXZJW0j495agRA_2Moe-92beh9AtJX1KJB-sCtOfU8r6gkmayTPUpWTIEiboxznqEpLSJE_FsIOuvF-R-HhOL1En5TzLORdd9DkHs9SN9cEa_BqcDrCw4HHVOjzWQdd7bz0ele0mQImLPZ7s2nobbNtot8cPB19jAp7qta33mDM8crqwjW60B3-NLipde7j5nj30Pp28jZ-S2cvj83g0SwznLCQlMZRKSSnoTAAUpBIFK2WVpUxyRrUEArEspKDzrKik4DrLWSaElCKVmrMeuj_mbrbFGkoDTSxSq42z63ilarVVf38au1SLdqdYLlgq0hgwOAYY13rvoDp5KVEH0CqCVgfQ6gg6Ou5-rzzpf8hGQX4UQCy-s-CUNxYaA6V1YIIqW_tv-BcdP46j</recordid><startdate>20140314</startdate><enddate>20140314</enddate><creator>Santos, Camila R.</creator><creator>Polo, Carla C.</creator><creator>Costa, Maria C.M.F.</creator><creator>Nascimento, Andrey F.Z.</creator><creator>Meza, Andreia N.</creator><creator>Cota, Junio</creator><creator>Hoffmam, Zaira B.</creator><creator>Honorato, Rodrigo V.</creator><creator>Oliveira, Paulo S.L.</creator><creator>Goldman, Gustavo H.</creator><creator>Gilbert, Harry J.</creator><creator>Prade, Rolf A.</creator><creator>Ruller, Roberto</creator><creator>Squina, Fabio M.</creator><creator>Wong, Dominic W.S.</creator><creator>Murakami, Mário T.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20140314</creationdate><title>Mechanistic Strategies for Catalysis Adopted by Evolutionary Distinct Family 43 Arabinanases</title><author>Santos, Camila R. ; Polo, Carla C. ; Costa, Maria C.M.F. ; Nascimento, Andrey F.Z. ; Meza, Andreia N. ; Cota, Junio ; Hoffmam, Zaira B. ; Honorato, Rodrigo V. ; Oliveira, Paulo S.L. ; Goldman, Gustavo H. ; Gilbert, Harry J. ; Prade, Rolf A. ; Ruller, Roberto ; Squina, Fabio M. ; Wong, Dominic W.S. ; Murakami, Mário T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-d0c117711ea65eeb0f5b3d7f6237431a7e0e074e2ea96bf754a69365577527a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accessory Domain</topic><topic>Activation Mechanism</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Arabinanase</topic><topic>Arabinose - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites</topic><topic>Biotechnology</topic><topic>Calcium - chemistry</topic><topic>Catalysis</topic><topic>Cattle</topic><topic>Cloning, Molecular</topic><topic>Crystallography, X-Ray</topic><topic>DNA Mutational Analysis</topic><topic>Endo/Exo Activities</topic><topic>Enzyme Kinetics</topic><topic>Enzymology</topic><topic>GH43 Family</topic><topic>Glycoside Hydrolases</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Gram-Negative Anaerobic Straight, Curved, and Helical Rods - enzymology</topic><topic>Hydrolysis</topic><topic>Ions - chemistry</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Metagenome</topic><topic>Metals - chemistry</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Protein Chimeras</topic><topic>Protein Engineering</topic><topic>Protein Structure</topic><topic>Protein Structure, Tertiary</topic><topic>Rumen - microbiology</topic><topic>Sequence Homology, Amino Acid</topic><topic>Solvents - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Camila R.</creatorcontrib><creatorcontrib>Polo, Carla C.</creatorcontrib><creatorcontrib>Costa, Maria C.M.F.</creatorcontrib><creatorcontrib>Nascimento, Andrey F.Z.</creatorcontrib><creatorcontrib>Meza, Andreia N.</creatorcontrib><creatorcontrib>Cota, Junio</creatorcontrib><creatorcontrib>Hoffmam, Zaira B.</creatorcontrib><creatorcontrib>Honorato, Rodrigo V.</creatorcontrib><creatorcontrib>Oliveira, Paulo S.L.</creatorcontrib><creatorcontrib>Goldman, Gustavo H.</creatorcontrib><creatorcontrib>Gilbert, Harry J.</creatorcontrib><creatorcontrib>Prade, Rolf A.</creatorcontrib><creatorcontrib>Ruller, Roberto</creatorcontrib><creatorcontrib>Squina, Fabio M.</creatorcontrib><creatorcontrib>Wong, Dominic W.S.</creatorcontrib><creatorcontrib>Murakami, Mário T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Camila R.</au><au>Polo, Carla C.</au><au>Costa, Maria C.M.F.</au><au>Nascimento, Andrey F.Z.</au><au>Meza, Andreia N.</au><au>Cota, Junio</au><au>Hoffmam, Zaira B.</au><au>Honorato, Rodrigo V.</au><au>Oliveira, Paulo S.L.</au><au>Goldman, Gustavo H.</au><au>Gilbert, Harry J.</au><au>Prade, Rolf A.</au><au>Ruller, Roberto</au><au>Squina, Fabio M.</au><au>Wong, Dominic W.S.</au><au>Murakami, Mário T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic Strategies for Catalysis Adopted by Evolutionary Distinct Family 43 Arabinanases</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2014-03-14</date><risdate>2014</risdate><volume>289</volume><issue>11</issue><spage>7362</spage><epage>7373</epage><pages>7362-7373</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Arabinanases (ABNs, EC 3.2.1.99) are promising catalysts for environmentally friendly biomass conversion into energy and chemicals. These enzymes catalyze the hydrolysis of the α-1,5-linked l-arabinofuranoside backbone of plant cell wall arabinans releasing arabino-oligosaccharides and arabinose, the second most abundant pentose in nature. In this work, new findings about the molecular mechanisms governing activation, functional differentiation, and catalysis of GH43 ABNs are presented. Biophysical, mutational, and biochemical studies with the hyperthermostable two-domain endo-acting ABN from Thermotoga petrophila (TpABN) revealed how some GH43 ABNs are activated by calcium ions via hyperpolarization of the catalytically relevant histidine and the importance of the ancillary domain for catalysis and conformational stability. On the other hand, the two GH43 ABNs from rumen metagenome, ARN2 and ARN3, presented a calcium-independent mechanism in which sodium is the most likely substituent for calcium ions. The crystal structure of the two-domain endo-acting ARN2 showed that its ability to efficiently degrade branched substrates is due to a larger catalytic interface with higher accessibility than that observed in other ABNs with preference for linear arabinan. Moreover, crystallographic characterization of the single-domain exo-acting ARN3 indicated that its cleavage pattern producing arabinose is associated with the chemical recognition of the reducing end of the substrate imposed by steric impediments at the aglycone-binding site. By structure-guided rational design, ARN3 was converted into a classical endo enzyme, confirming the role of the extended Arg203–Ala230 loop in determining its action mode. These results reveal novel molecular aspects concerning the functioning of GH43 ABNs and provide new strategies for arabinan degradation.
Background: Arabinanases are key enzymes involved in hemicellulose degradation.
Results: Crystallographic, mutational, and biochemical assays of three arabinanases reveal the molecular mechanisms governing their catalysis and activation.
Conclusion: Accessory domain and metal ion are essential for catalysis. Structural adaptations in the catalytic interface confer unique action modes to ruminal arabinanases.
Significance: This work provides new molecular strategies for arabinan hydrolysis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24469445</pmid><doi>10.1074/jbc.M113.537167</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2014-03, Vol.289 (11), p.7362-7373 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3953252 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Accessory Domain Activation Mechanism Amino Acid Sequence Animals Arabinanase Arabinose - chemistry Bacterial Proteins - metabolism Binding Sites Biotechnology Calcium - chemistry Catalysis Cattle Cloning, Molecular Crystallography, X-Ray DNA Mutational Analysis Endo/Exo Activities Enzyme Kinetics Enzymology GH43 Family Glycoside Hydrolases Glycoside Hydrolases - metabolism Gram-Negative Anaerobic Straight, Curved, and Helical Rods - enzymology Hydrolysis Ions - chemistry Kinetics Ligands Metagenome Metals - chemistry Models, Molecular Molecular Sequence Data Mutagenesis Protein Chimeras Protein Engineering Protein Structure Protein Structure, Tertiary Rumen - microbiology Sequence Homology, Amino Acid Solvents - chemistry |
title | Mechanistic Strategies for Catalysis Adopted by Evolutionary Distinct Family 43 Arabinanases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20Strategies%20for%20Catalysis%20Adopted%20by%20Evolutionary%20Distinct%20Family%2043%20Arabinanases&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Santos,%20Camila%20R.&rft.date=2014-03-14&rft.volume=289&rft.issue=11&rft.spage=7362&rft.epage=7373&rft.pages=7362-7373&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M113.537167&rft_dat=%3Cpubmed_cross%3E24469445%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24469445&rft_els_id=S0021925820442449&rfr_iscdi=true |