Mechanistic Strategies for Catalysis Adopted by Evolutionary Distinct Family 43 Arabinanases

Arabinanases (ABNs, EC 3.2.1.99) are promising catalysts for environmentally friendly biomass conversion into energy and chemicals. These enzymes catalyze the hydrolysis of the α-1,5-linked l-arabinofuranoside backbone of plant cell wall arabinans releasing arabino-oligosaccharides and arabinose, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2014-03, Vol.289 (11), p.7362-7373
Hauptverfasser: Santos, Camila R., Polo, Carla C., Costa, Maria C.M.F., Nascimento, Andrey F.Z., Meza, Andreia N., Cota, Junio, Hoffmam, Zaira B., Honorato, Rodrigo V., Oliveira, Paulo S.L., Goldman, Gustavo H., Gilbert, Harry J., Prade, Rolf A., Ruller, Roberto, Squina, Fabio M., Wong, Dominic W.S., Murakami, Mário T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7373
container_issue 11
container_start_page 7362
container_title The Journal of biological chemistry
container_volume 289
creator Santos, Camila R.
Polo, Carla C.
Costa, Maria C.M.F.
Nascimento, Andrey F.Z.
Meza, Andreia N.
Cota, Junio
Hoffmam, Zaira B.
Honorato, Rodrigo V.
Oliveira, Paulo S.L.
Goldman, Gustavo H.
Gilbert, Harry J.
Prade, Rolf A.
Ruller, Roberto
Squina, Fabio M.
Wong, Dominic W.S.
Murakami, Mário T.
description Arabinanases (ABNs, EC 3.2.1.99) are promising catalysts for environmentally friendly biomass conversion into energy and chemicals. These enzymes catalyze the hydrolysis of the α-1,5-linked l-arabinofuranoside backbone of plant cell wall arabinans releasing arabino-oligosaccharides and arabinose, the second most abundant pentose in nature. In this work, new findings about the molecular mechanisms governing activation, functional differentiation, and catalysis of GH43 ABNs are presented. Biophysical, mutational, and biochemical studies with the hyperthermostable two-domain endo-acting ABN from Thermotoga petrophila (TpABN) revealed how some GH43 ABNs are activated by calcium ions via hyperpolarization of the catalytically relevant histidine and the importance of the ancillary domain for catalysis and conformational stability. On the other hand, the two GH43 ABNs from rumen metagenome, ARN2 and ARN3, presented a calcium-independent mechanism in which sodium is the most likely substituent for calcium ions. The crystal structure of the two-domain endo-acting ARN2 showed that its ability to efficiently degrade branched substrates is due to a larger catalytic interface with higher accessibility than that observed in other ABNs with preference for linear arabinan. Moreover, crystallographic characterization of the single-domain exo-acting ARN3 indicated that its cleavage pattern producing arabinose is associated with the chemical recognition of the reducing end of the substrate imposed by steric impediments at the aglycone-binding site. By structure-guided rational design, ARN3 was converted into a classical endo enzyme, confirming the role of the extended Arg203–Ala230 loop in determining its action mode. These results reveal novel molecular aspects concerning the functioning of GH43 ABNs and provide new strategies for arabinan degradation. Background: Arabinanases are key enzymes involved in hemicellulose degradation. Results: Crystallographic, mutational, and biochemical assays of three arabinanases reveal the molecular mechanisms governing their catalysis and activation. Conclusion: Accessory domain and metal ion are essential for catalysis. Structural adaptations in the catalytic interface confer unique action modes to ruminal arabinanases. Significance: This work provides new molecular strategies for arabinan hydrolysis.
doi_str_mv 10.1074/jbc.M113.537167
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3953252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820442449</els_id><sourcerecordid>24469445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-d0c117711ea65eeb0f5b3d7f6237431a7e0e074e2ea96bf754a69365577527a43</originalsourceid><addsrcrecordid>eNp1kEFPAjEQhRujEUTP3kz_wEK7bbfsxYQgqAnEg5p4MGm63VkoWXZJW0j495agRA_2Moe-92beh9AtJX1KJB-sCtOfU8r6gkmayTPUpWTIEiboxznqEpLSJE_FsIOuvF-R-HhOL1En5TzLORdd9DkHs9SN9cEa_BqcDrCw4HHVOjzWQdd7bz0ele0mQImLPZ7s2nobbNtot8cPB19jAp7qta33mDM8crqwjW60B3-NLipde7j5nj30Pp28jZ-S2cvj83g0SwznLCQlMZRKSSnoTAAUpBIFK2WVpUxyRrUEArEspKDzrKik4DrLWSaElCKVmrMeuj_mbrbFGkoDTSxSq42z63ilarVVf38au1SLdqdYLlgq0hgwOAYY13rvoDp5KVEH0CqCVgfQ6gg6Ou5-rzzpf8hGQX4UQCy-s-CUNxYaA6V1YIIqW_tv-BcdP46j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanistic Strategies for Catalysis Adopted by Evolutionary Distinct Family 43 Arabinanases</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Santos, Camila R. ; Polo, Carla C. ; Costa, Maria C.M.F. ; Nascimento, Andrey F.Z. ; Meza, Andreia N. ; Cota, Junio ; Hoffmam, Zaira B. ; Honorato, Rodrigo V. ; Oliveira, Paulo S.L. ; Goldman, Gustavo H. ; Gilbert, Harry J. ; Prade, Rolf A. ; Ruller, Roberto ; Squina, Fabio M. ; Wong, Dominic W.S. ; Murakami, Mário T.</creator><creatorcontrib>Santos, Camila R. ; Polo, Carla C. ; Costa, Maria C.M.F. ; Nascimento, Andrey F.Z. ; Meza, Andreia N. ; Cota, Junio ; Hoffmam, Zaira B. ; Honorato, Rodrigo V. ; Oliveira, Paulo S.L. ; Goldman, Gustavo H. ; Gilbert, Harry J. ; Prade, Rolf A. ; Ruller, Roberto ; Squina, Fabio M. ; Wong, Dominic W.S. ; Murakami, Mário T.</creatorcontrib><description>Arabinanases (ABNs, EC 3.2.1.99) are promising catalysts for environmentally friendly biomass conversion into energy and chemicals. These enzymes catalyze the hydrolysis of the α-1,5-linked l-arabinofuranoside backbone of plant cell wall arabinans releasing arabino-oligosaccharides and arabinose, the second most abundant pentose in nature. In this work, new findings about the molecular mechanisms governing activation, functional differentiation, and catalysis of GH43 ABNs are presented. Biophysical, mutational, and biochemical studies with the hyperthermostable two-domain endo-acting ABN from Thermotoga petrophila (TpABN) revealed how some GH43 ABNs are activated by calcium ions via hyperpolarization of the catalytically relevant histidine and the importance of the ancillary domain for catalysis and conformational stability. On the other hand, the two GH43 ABNs from rumen metagenome, ARN2 and ARN3, presented a calcium-independent mechanism in which sodium is the most likely substituent for calcium ions. The crystal structure of the two-domain endo-acting ARN2 showed that its ability to efficiently degrade branched substrates is due to a larger catalytic interface with higher accessibility than that observed in other ABNs with preference for linear arabinan. Moreover, crystallographic characterization of the single-domain exo-acting ARN3 indicated that its cleavage pattern producing arabinose is associated with the chemical recognition of the reducing end of the substrate imposed by steric impediments at the aglycone-binding site. By structure-guided rational design, ARN3 was converted into a classical endo enzyme, confirming the role of the extended Arg203–Ala230 loop in determining its action mode. These results reveal novel molecular aspects concerning the functioning of GH43 ABNs and provide new strategies for arabinan degradation. Background: Arabinanases are key enzymes involved in hemicellulose degradation. Results: Crystallographic, mutational, and biochemical assays of three arabinanases reveal the molecular mechanisms governing their catalysis and activation. Conclusion: Accessory domain and metal ion are essential for catalysis. Structural adaptations in the catalytic interface confer unique action modes to ruminal arabinanases. Significance: This work provides new molecular strategies for arabinan hydrolysis.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M113.537167</identifier><identifier>PMID: 24469445</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Accessory Domain ; Activation Mechanism ; Amino Acid Sequence ; Animals ; Arabinanase ; Arabinose - chemistry ; Bacterial Proteins - metabolism ; Binding Sites ; Biotechnology ; Calcium - chemistry ; Catalysis ; Cattle ; Cloning, Molecular ; Crystallography, X-Ray ; DNA Mutational Analysis ; Endo/Exo Activities ; Enzyme Kinetics ; Enzymology ; GH43 Family ; Glycoside Hydrolases ; Glycoside Hydrolases - metabolism ; Gram-Negative Anaerobic Straight, Curved, and Helical Rods - enzymology ; Hydrolysis ; Ions - chemistry ; Kinetics ; Ligands ; Metagenome ; Metals - chemistry ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Protein Chimeras ; Protein Engineering ; Protein Structure ; Protein Structure, Tertiary ; Rumen - microbiology ; Sequence Homology, Amino Acid ; Solvents - chemistry</subject><ispartof>The Journal of biological chemistry, 2014-03, Vol.289 (11), p.7362-7373</ispartof><rights>2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-d0c117711ea65eeb0f5b3d7f6237431a7e0e074e2ea96bf754a69365577527a43</citedby><cites>FETCH-LOGICAL-c443t-d0c117711ea65eeb0f5b3d7f6237431a7e0e074e2ea96bf754a69365577527a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953252/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953252/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24469445$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santos, Camila R.</creatorcontrib><creatorcontrib>Polo, Carla C.</creatorcontrib><creatorcontrib>Costa, Maria C.M.F.</creatorcontrib><creatorcontrib>Nascimento, Andrey F.Z.</creatorcontrib><creatorcontrib>Meza, Andreia N.</creatorcontrib><creatorcontrib>Cota, Junio</creatorcontrib><creatorcontrib>Hoffmam, Zaira B.</creatorcontrib><creatorcontrib>Honorato, Rodrigo V.</creatorcontrib><creatorcontrib>Oliveira, Paulo S.L.</creatorcontrib><creatorcontrib>Goldman, Gustavo H.</creatorcontrib><creatorcontrib>Gilbert, Harry J.</creatorcontrib><creatorcontrib>Prade, Rolf A.</creatorcontrib><creatorcontrib>Ruller, Roberto</creatorcontrib><creatorcontrib>Squina, Fabio M.</creatorcontrib><creatorcontrib>Wong, Dominic W.S.</creatorcontrib><creatorcontrib>Murakami, Mário T.</creatorcontrib><title>Mechanistic Strategies for Catalysis Adopted by Evolutionary Distinct Family 43 Arabinanases</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Arabinanases (ABNs, EC 3.2.1.99) are promising catalysts for environmentally friendly biomass conversion into energy and chemicals. These enzymes catalyze the hydrolysis of the α-1,5-linked l-arabinofuranoside backbone of plant cell wall arabinans releasing arabino-oligosaccharides and arabinose, the second most abundant pentose in nature. In this work, new findings about the molecular mechanisms governing activation, functional differentiation, and catalysis of GH43 ABNs are presented. Biophysical, mutational, and biochemical studies with the hyperthermostable two-domain endo-acting ABN from Thermotoga petrophila (TpABN) revealed how some GH43 ABNs are activated by calcium ions via hyperpolarization of the catalytically relevant histidine and the importance of the ancillary domain for catalysis and conformational stability. On the other hand, the two GH43 ABNs from rumen metagenome, ARN2 and ARN3, presented a calcium-independent mechanism in which sodium is the most likely substituent for calcium ions. The crystal structure of the two-domain endo-acting ARN2 showed that its ability to efficiently degrade branched substrates is due to a larger catalytic interface with higher accessibility than that observed in other ABNs with preference for linear arabinan. Moreover, crystallographic characterization of the single-domain exo-acting ARN3 indicated that its cleavage pattern producing arabinose is associated with the chemical recognition of the reducing end of the substrate imposed by steric impediments at the aglycone-binding site. By structure-guided rational design, ARN3 was converted into a classical endo enzyme, confirming the role of the extended Arg203–Ala230 loop in determining its action mode. These results reveal novel molecular aspects concerning the functioning of GH43 ABNs and provide new strategies for arabinan degradation. Background: Arabinanases are key enzymes involved in hemicellulose degradation. Results: Crystallographic, mutational, and biochemical assays of three arabinanases reveal the molecular mechanisms governing their catalysis and activation. Conclusion: Accessory domain and metal ion are essential for catalysis. Structural adaptations in the catalytic interface confer unique action modes to ruminal arabinanases. Significance: This work provides new molecular strategies for arabinan hydrolysis.</description><subject>Accessory Domain</subject><subject>Activation Mechanism</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Arabinanase</subject><subject>Arabinose - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites</subject><subject>Biotechnology</subject><subject>Calcium - chemistry</subject><subject>Catalysis</subject><subject>Cattle</subject><subject>Cloning, Molecular</subject><subject>Crystallography, X-Ray</subject><subject>DNA Mutational Analysis</subject><subject>Endo/Exo Activities</subject><subject>Enzyme Kinetics</subject><subject>Enzymology</subject><subject>GH43 Family</subject><subject>Glycoside Hydrolases</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Gram-Negative Anaerobic Straight, Curved, and Helical Rods - enzymology</subject><subject>Hydrolysis</subject><subject>Ions - chemistry</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Metagenome</subject><subject>Metals - chemistry</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Protein Chimeras</subject><subject>Protein Engineering</subject><subject>Protein Structure</subject><subject>Protein Structure, Tertiary</subject><subject>Rumen - microbiology</subject><subject>Sequence Homology, Amino Acid</subject><subject>Solvents - chemistry</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEFPAjEQhRujEUTP3kz_wEK7bbfsxYQgqAnEg5p4MGm63VkoWXZJW0j495agRA_2Moe-92beh9AtJX1KJB-sCtOfU8r6gkmayTPUpWTIEiboxznqEpLSJE_FsIOuvF-R-HhOL1En5TzLORdd9DkHs9SN9cEa_BqcDrCw4HHVOjzWQdd7bz0ele0mQImLPZ7s2nobbNtot8cPB19jAp7qta33mDM8crqwjW60B3-NLipde7j5nj30Pp28jZ-S2cvj83g0SwznLCQlMZRKSSnoTAAUpBIFK2WVpUxyRrUEArEspKDzrKik4DrLWSaElCKVmrMeuj_mbrbFGkoDTSxSq42z63ilarVVf38au1SLdqdYLlgq0hgwOAYY13rvoDp5KVEH0CqCVgfQ6gg6Ou5-rzzpf8hGQX4UQCy-s-CUNxYaA6V1YIIqW_tv-BcdP46j</recordid><startdate>20140314</startdate><enddate>20140314</enddate><creator>Santos, Camila R.</creator><creator>Polo, Carla C.</creator><creator>Costa, Maria C.M.F.</creator><creator>Nascimento, Andrey F.Z.</creator><creator>Meza, Andreia N.</creator><creator>Cota, Junio</creator><creator>Hoffmam, Zaira B.</creator><creator>Honorato, Rodrigo V.</creator><creator>Oliveira, Paulo S.L.</creator><creator>Goldman, Gustavo H.</creator><creator>Gilbert, Harry J.</creator><creator>Prade, Rolf A.</creator><creator>Ruller, Roberto</creator><creator>Squina, Fabio M.</creator><creator>Wong, Dominic W.S.</creator><creator>Murakami, Mário T.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20140314</creationdate><title>Mechanistic Strategies for Catalysis Adopted by Evolutionary Distinct Family 43 Arabinanases</title><author>Santos, Camila R. ; Polo, Carla C. ; Costa, Maria C.M.F. ; Nascimento, Andrey F.Z. ; Meza, Andreia N. ; Cota, Junio ; Hoffmam, Zaira B. ; Honorato, Rodrigo V. ; Oliveira, Paulo S.L. ; Goldman, Gustavo H. ; Gilbert, Harry J. ; Prade, Rolf A. ; Ruller, Roberto ; Squina, Fabio M. ; Wong, Dominic W.S. ; Murakami, Mário T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-d0c117711ea65eeb0f5b3d7f6237431a7e0e074e2ea96bf754a69365577527a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accessory Domain</topic><topic>Activation Mechanism</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Arabinanase</topic><topic>Arabinose - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites</topic><topic>Biotechnology</topic><topic>Calcium - chemistry</topic><topic>Catalysis</topic><topic>Cattle</topic><topic>Cloning, Molecular</topic><topic>Crystallography, X-Ray</topic><topic>DNA Mutational Analysis</topic><topic>Endo/Exo Activities</topic><topic>Enzyme Kinetics</topic><topic>Enzymology</topic><topic>GH43 Family</topic><topic>Glycoside Hydrolases</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Gram-Negative Anaerobic Straight, Curved, and Helical Rods - enzymology</topic><topic>Hydrolysis</topic><topic>Ions - chemistry</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Metagenome</topic><topic>Metals - chemistry</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Protein Chimeras</topic><topic>Protein Engineering</topic><topic>Protein Structure</topic><topic>Protein Structure, Tertiary</topic><topic>Rumen - microbiology</topic><topic>Sequence Homology, Amino Acid</topic><topic>Solvents - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Camila R.</creatorcontrib><creatorcontrib>Polo, Carla C.</creatorcontrib><creatorcontrib>Costa, Maria C.M.F.</creatorcontrib><creatorcontrib>Nascimento, Andrey F.Z.</creatorcontrib><creatorcontrib>Meza, Andreia N.</creatorcontrib><creatorcontrib>Cota, Junio</creatorcontrib><creatorcontrib>Hoffmam, Zaira B.</creatorcontrib><creatorcontrib>Honorato, Rodrigo V.</creatorcontrib><creatorcontrib>Oliveira, Paulo S.L.</creatorcontrib><creatorcontrib>Goldman, Gustavo H.</creatorcontrib><creatorcontrib>Gilbert, Harry J.</creatorcontrib><creatorcontrib>Prade, Rolf A.</creatorcontrib><creatorcontrib>Ruller, Roberto</creatorcontrib><creatorcontrib>Squina, Fabio M.</creatorcontrib><creatorcontrib>Wong, Dominic W.S.</creatorcontrib><creatorcontrib>Murakami, Mário T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Camila R.</au><au>Polo, Carla C.</au><au>Costa, Maria C.M.F.</au><au>Nascimento, Andrey F.Z.</au><au>Meza, Andreia N.</au><au>Cota, Junio</au><au>Hoffmam, Zaira B.</au><au>Honorato, Rodrigo V.</au><au>Oliveira, Paulo S.L.</au><au>Goldman, Gustavo H.</au><au>Gilbert, Harry J.</au><au>Prade, Rolf A.</au><au>Ruller, Roberto</au><au>Squina, Fabio M.</au><au>Wong, Dominic W.S.</au><au>Murakami, Mário T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic Strategies for Catalysis Adopted by Evolutionary Distinct Family 43 Arabinanases</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2014-03-14</date><risdate>2014</risdate><volume>289</volume><issue>11</issue><spage>7362</spage><epage>7373</epage><pages>7362-7373</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Arabinanases (ABNs, EC 3.2.1.99) are promising catalysts for environmentally friendly biomass conversion into energy and chemicals. These enzymes catalyze the hydrolysis of the α-1,5-linked l-arabinofuranoside backbone of plant cell wall arabinans releasing arabino-oligosaccharides and arabinose, the second most abundant pentose in nature. In this work, new findings about the molecular mechanisms governing activation, functional differentiation, and catalysis of GH43 ABNs are presented. Biophysical, mutational, and biochemical studies with the hyperthermostable two-domain endo-acting ABN from Thermotoga petrophila (TpABN) revealed how some GH43 ABNs are activated by calcium ions via hyperpolarization of the catalytically relevant histidine and the importance of the ancillary domain for catalysis and conformational stability. On the other hand, the two GH43 ABNs from rumen metagenome, ARN2 and ARN3, presented a calcium-independent mechanism in which sodium is the most likely substituent for calcium ions. The crystal structure of the two-domain endo-acting ARN2 showed that its ability to efficiently degrade branched substrates is due to a larger catalytic interface with higher accessibility than that observed in other ABNs with preference for linear arabinan. Moreover, crystallographic characterization of the single-domain exo-acting ARN3 indicated that its cleavage pattern producing arabinose is associated with the chemical recognition of the reducing end of the substrate imposed by steric impediments at the aglycone-binding site. By structure-guided rational design, ARN3 was converted into a classical endo enzyme, confirming the role of the extended Arg203–Ala230 loop in determining its action mode. These results reveal novel molecular aspects concerning the functioning of GH43 ABNs and provide new strategies for arabinan degradation. Background: Arabinanases are key enzymes involved in hemicellulose degradation. Results: Crystallographic, mutational, and biochemical assays of three arabinanases reveal the molecular mechanisms governing their catalysis and activation. Conclusion: Accessory domain and metal ion are essential for catalysis. Structural adaptations in the catalytic interface confer unique action modes to ruminal arabinanases. Significance: This work provides new molecular strategies for arabinan hydrolysis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24469445</pmid><doi>10.1074/jbc.M113.537167</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2014-03, Vol.289 (11), p.7362-7373
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3953252
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Accessory Domain
Activation Mechanism
Amino Acid Sequence
Animals
Arabinanase
Arabinose - chemistry
Bacterial Proteins - metabolism
Binding Sites
Biotechnology
Calcium - chemistry
Catalysis
Cattle
Cloning, Molecular
Crystallography, X-Ray
DNA Mutational Analysis
Endo/Exo Activities
Enzyme Kinetics
Enzymology
GH43 Family
Glycoside Hydrolases
Glycoside Hydrolases - metabolism
Gram-Negative Anaerobic Straight, Curved, and Helical Rods - enzymology
Hydrolysis
Ions - chemistry
Kinetics
Ligands
Metagenome
Metals - chemistry
Models, Molecular
Molecular Sequence Data
Mutagenesis
Protein Chimeras
Protein Engineering
Protein Structure
Protein Structure, Tertiary
Rumen - microbiology
Sequence Homology, Amino Acid
Solvents - chemistry
title Mechanistic Strategies for Catalysis Adopted by Evolutionary Distinct Family 43 Arabinanases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20Strategies%20for%20Catalysis%20Adopted%20by%20Evolutionary%20Distinct%20Family%2043%20Arabinanases&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Santos,%20Camila%20R.&rft.date=2014-03-14&rft.volume=289&rft.issue=11&rft.spage=7362&rft.epage=7373&rft.pages=7362-7373&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M113.537167&rft_dat=%3Cpubmed_cross%3E24469445%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24469445&rft_els_id=S0021925820442449&rfr_iscdi=true