Brain modularity controls the critical behavior of spontaneous activity
The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2014-03, Vol.4 (1), p.4312-4312, Article 4312 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4312 |
---|---|
container_issue | 1 |
container_start_page | 4312 |
container_title | Scientific reports |
container_volume | 4 |
creator | Russo, R. Herrmann, H. J. de Arcangelis, L. |
description | The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure. |
doi_str_mv | 10.1038/srep04312 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3952147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897802862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-8078bfe90748597fbd431fe0d974b34526d71b522141e5c32e336196fb9db873</originalsourceid><addsrcrecordid>eNplkV9LwzAUxYMoTuYe_AJS8EWFaf61SV4EHTqFgS97D2mabhltM5N2sG9vRueYmpeEe38591wOAFcIPiBI-GPwZg0pQfgEXGBI0zEmGJ8evQdgFMIKxpNiQZE4BwNMM4woxxdg-uKVbZLaFV2lvG23iXZN610VknZpEh1LVqsqyc1SbazziSuTsI6IaozrQqJ0azfx2yU4K1UVzGh_D8H87XU-eR_PPqcfk-fZWFPC2zGHjOelEZBRngpW5kV0XhpYCEZzQlOcFQzlKY7ukEk1wYaQDImszEWRc0aG4KmXXXd5bQptoldVybW3tfJb6ZSVvzuNXcqF20gi0qi5E7jdC3j31ZnQytoGbaqq30eiFDImIEZZRG_-oCvX-SZuJxEXjEPMMxypu57S3oWYRXkwg6DcBSQPAUX2-tj9gfyJIwL3PRBiq1kYfzTyn9o3uLmaAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1897802862</pqid></control><display><type>article</type><title>Brain modularity controls the critical behavior of spontaneous activity</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Russo, R. ; Herrmann, H. J. ; de Arcangelis, L.</creator><creatorcontrib>Russo, R. ; Herrmann, H. J. ; de Arcangelis, L.</creatorcontrib><description>The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep04312</identifier><identifier>PMID: 24621482</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/116 ; 639/766/530 ; Behavior - physiology ; Brain ; Brain - physiology ; Humanities and Social Sciences ; Humans ; Models, Biological ; multidisciplinary ; Nerve Net - physiology ; Neurological diseases ; Scaling ; Science ; Synapses</subject><ispartof>Scientific reports, 2014-03, Vol.4 (1), p.4312-4312, Article 4312</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Mar 2014</rights><rights>Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-8078bfe90748597fbd431fe0d974b34526d71b522141e5c32e336196fb9db873</citedby><cites>FETCH-LOGICAL-c438t-8078bfe90748597fbd431fe0d974b34526d71b522141e5c32e336196fb9db873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3952147/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3952147/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24621482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Russo, R.</creatorcontrib><creatorcontrib>Herrmann, H. J.</creatorcontrib><creatorcontrib>de Arcangelis, L.</creatorcontrib><title>Brain modularity controls the critical behavior of spontaneous activity</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.</description><subject>631/378/116</subject><subject>639/766/530</subject><subject>Behavior - physiology</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Nerve Net - physiology</subject><subject>Neurological diseases</subject><subject>Scaling</subject><subject>Science</subject><subject>Synapses</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV9LwzAUxYMoTuYe_AJS8EWFaf61SV4EHTqFgS97D2mabhltM5N2sG9vRueYmpeEe38591wOAFcIPiBI-GPwZg0pQfgEXGBI0zEmGJ8evQdgFMIKxpNiQZE4BwNMM4woxxdg-uKVbZLaFV2lvG23iXZN610VknZpEh1LVqsqyc1SbazziSuTsI6IaozrQqJ0azfx2yU4K1UVzGh_D8H87XU-eR_PPqcfk-fZWFPC2zGHjOelEZBRngpW5kV0XhpYCEZzQlOcFQzlKY7ukEk1wYaQDImszEWRc0aG4KmXXXd5bQptoldVybW3tfJb6ZSVvzuNXcqF20gi0qi5E7jdC3j31ZnQytoGbaqq30eiFDImIEZZRG_-oCvX-SZuJxEXjEPMMxypu57S3oWYRXkwg6DcBSQPAUX2-tj9gfyJIwL3PRBiq1kYfzTyn9o3uLmaAA</recordid><startdate>20140313</startdate><enddate>20140313</enddate><creator>Russo, R.</creator><creator>Herrmann, H. J.</creator><creator>de Arcangelis, L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140313</creationdate><title>Brain modularity controls the critical behavior of spontaneous activity</title><author>Russo, R. ; Herrmann, H. J. ; de Arcangelis, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-8078bfe90748597fbd431fe0d974b34526d71b522141e5c32e336196fb9db873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>631/378/116</topic><topic>639/766/530</topic><topic>Behavior - physiology</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Nerve Net - physiology</topic><topic>Neurological diseases</topic><topic>Scaling</topic><topic>Science</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russo, R.</creatorcontrib><creatorcontrib>Herrmann, H. J.</creatorcontrib><creatorcontrib>de Arcangelis, L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Russo, R.</au><au>Herrmann, H. J.</au><au>de Arcangelis, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain modularity controls the critical behavior of spontaneous activity</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2014-03-13</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>4312</spage><epage>4312</epage><pages>4312-4312</pages><artnum>4312</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24621482</pmid><doi>10.1038/srep04312</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2014-03, Vol.4 (1), p.4312-4312, Article 4312 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3952147 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 631/378/116 639/766/530 Behavior - physiology Brain Brain - physiology Humanities and Social Sciences Humans Models, Biological multidisciplinary Nerve Net - physiology Neurological diseases Scaling Science Synapses |
title | Brain modularity controls the critical behavior of spontaneous activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T16%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20modularity%20controls%20the%20critical%20behavior%20of%20spontaneous%20activity&rft.jtitle=Scientific%20reports&rft.au=Russo,%20R.&rft.date=2014-03-13&rft.volume=4&rft.issue=1&rft.spage=4312&rft.epage=4312&rft.pages=4312-4312&rft.artnum=4312&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep04312&rft_dat=%3Cproquest_pubme%3E1897802862%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1897802862&rft_id=info:pmid/24621482&rfr_iscdi=true |