Experimental observation of defect pair separation triggering phase transitions
First-order phase transitions typically exhibit a significant hysteresis resulting for instance in boiling retardation and supercooling. The hysteresis arises, because nucleation of the new phase is activated. The free-energy change is positive until the nucleus reaches a critical size beyond which...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2014-03, Vol.4 (1), p.4110-4110, Article 4110 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4110 |
---|---|
container_issue | 1 |
container_start_page | 4110 |
container_title | Scientific reports |
container_volume | 4 |
creator | Cordin, M. Lechner, B. A. J. Duerrbeck, S. Menzel, A. Bertel, E. Redinger, J. Franchini, C. |
description | First-order phase transitions typically exhibit a significant hysteresis resulting for instance in boiling retardation and supercooling. The hysteresis arises, because nucleation of the new phase is activated. The free-energy change is positive until the nucleus reaches a critical size beyond which further growth is downhill. In practice, the barrier is often circumvented by the presence of heterogeneous nucleation centres, e.g. at vessel walls or seed crystals. Recently, it has been proposed that the homogeneous melting of ice proceeds via separation of defect pairs with a substantially smaller barrier as compared to the mere aggregation of defects. Here we report the observation of an analogous mechanism catalysing a two-dimensional homogeneous phase transition. A similar process is believed to occur in spin systems. This suggests that separation of defect pairs is a common trigger for phase transitions. Partially circumventing the activation barrier it reduces the hysteresis and may promote fluctuations within a temperature range increasing with decreasing dimensionality. |
doi_str_mv | 10.1038/srep04110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3950641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897802622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-f49ea98384aff1f400a2d4793e0d53732d8b8c15a894b3d700ee70164d265c3b3</originalsourceid><addsrcrecordid>eNplkV1LHDEUhkNpqaJe9A-Uob1pha0nXzPJjSBirSB4o9chkzmzG5lNpsms6L9vltFl2-Ym4Zwn7_l4CflE4QcFrs5ywhEEpfCOHDIQcsE4Y-_33gfkJOdHKEcyLaj-SA6YqKlqQBySu6vnEZNfY5jsUMU2Y3qyk4-hin3VYY9uqkbrU5VxtGnOTMkvl-VTWFbjymYsARuy3-byMfnQ2yHjyet9RB5-Xt1f_lrc3l3fXF7cLpyo5bTohUarFVfC9j3tBYBlnWg0R-gkbzjrVKsclVZp0fKuAUBsgNaiY7V0vOVH5HzWHTftGjtX-k92MGMZxaYXE603f2eCX5llfDJcS6gFLQJfZoGYJ2-y8xO6lYshlIkNrcuGNC_Qt9cqKf7eYJ7M2meHw2ADxk02VEJDNcimLujXf9DHuEmh7MBQpRsFrGasUN9nyqWYi3P9rmMKZmun2dlZ2M_7I-7IN_MKcDoDedyagWmv5H9qfwCo1amR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1897802622</pqid></control><display><type>article</type><title>Experimental observation of defect pair separation triggering phase transitions</title><source>PubMed (Medline)</source><source>Springer Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Nature Journals Online</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Cordin, M. ; Lechner, B. A. J. ; Duerrbeck, S. ; Menzel, A. ; Bertel, E. ; Redinger, J. ; Franchini, C.</creator><creatorcontrib>Cordin, M. ; Lechner, B. A. J. ; Duerrbeck, S. ; Menzel, A. ; Bertel, E. ; Redinger, J. ; Franchini, C. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>First-order phase transitions typically exhibit a significant hysteresis resulting for instance in boiling retardation and supercooling. The hysteresis arises, because nucleation of the new phase is activated. The free-energy change is positive until the nucleus reaches a critical size beyond which further growth is downhill. In practice, the barrier is often circumvented by the presence of heterogeneous nucleation centres, e.g. at vessel walls or seed crystals. Recently, it has been proposed that the homogeneous melting of ice proceeds via separation of defect pairs with a substantially smaller barrier as compared to the mere aggregation of defects. Here we report the observation of an analogous mechanism catalysing a two-dimensional homogeneous phase transition. A similar process is believed to occur in spin systems. This suggests that separation of defect pairs is a common trigger for phase transitions. Partially circumventing the activation barrier it reduces the hysteresis and may promote fluctuations within a temperature range increasing with decreasing dimensionality.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep04110</identifier><identifier>PMID: 24618704</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>147/138 ; 639/301/119/2795 ; 639/638/440/950 ; 639/766/119/544 ; Boiling ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Crystals ; Defects ; Free energy ; Humanities and Social Sciences ; Hysteresis ; Ice ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; MATERIALS SCIENCE ; Melting ; multidisciplinary ; Nucleation ; Nuclei ; Phase transitions ; Science ; Supercooling ; Temperature effects</subject><ispartof>Scientific reports, 2014-03, Vol.4 (1), p.4110-4110, Article 4110</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Mar 2014</rights><rights>Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-f49ea98384aff1f400a2d4793e0d53732d8b8c15a894b3d700ee70164d265c3b3</citedby><cites>FETCH-LOGICAL-c465t-f49ea98384aff1f400a2d4793e0d53732d8b8c15a894b3d700ee70164d265c3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3950641/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3950641/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24618704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1624693$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cordin, M.</creatorcontrib><creatorcontrib>Lechner, B. A. J.</creatorcontrib><creatorcontrib>Duerrbeck, S.</creatorcontrib><creatorcontrib>Menzel, A.</creatorcontrib><creatorcontrib>Bertel, E.</creatorcontrib><creatorcontrib>Redinger, J.</creatorcontrib><creatorcontrib>Franchini, C.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Experimental observation of defect pair separation triggering phase transitions</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>First-order phase transitions typically exhibit a significant hysteresis resulting for instance in boiling retardation and supercooling. The hysteresis arises, because nucleation of the new phase is activated. The free-energy change is positive until the nucleus reaches a critical size beyond which further growth is downhill. In practice, the barrier is often circumvented by the presence of heterogeneous nucleation centres, e.g. at vessel walls or seed crystals. Recently, it has been proposed that the homogeneous melting of ice proceeds via separation of defect pairs with a substantially smaller barrier as compared to the mere aggregation of defects. Here we report the observation of an analogous mechanism catalysing a two-dimensional homogeneous phase transition. A similar process is believed to occur in spin systems. This suggests that separation of defect pairs is a common trigger for phase transitions. Partially circumventing the activation barrier it reduces the hysteresis and may promote fluctuations within a temperature range increasing with decreasing dimensionality.</description><subject>147/138</subject><subject>639/301/119/2795</subject><subject>639/638/440/950</subject><subject>639/766/119/544</subject><subject>Boiling</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Crystals</subject><subject>Defects</subject><subject>Free energy</subject><subject>Humanities and Social Sciences</subject><subject>Hysteresis</subject><subject>Ice</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>MATERIALS SCIENCE</subject><subject>Melting</subject><subject>multidisciplinary</subject><subject>Nucleation</subject><subject>Nuclei</subject><subject>Phase transitions</subject><subject>Science</subject><subject>Supercooling</subject><subject>Temperature effects</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV1LHDEUhkNpqaJe9A-Uob1pha0nXzPJjSBirSB4o9chkzmzG5lNpsms6L9vltFl2-Ym4Zwn7_l4CflE4QcFrs5ywhEEpfCOHDIQcsE4Y-_33gfkJOdHKEcyLaj-SA6YqKlqQBySu6vnEZNfY5jsUMU2Y3qyk4-hin3VYY9uqkbrU5VxtGnOTMkvl-VTWFbjymYsARuy3-byMfnQ2yHjyet9RB5-Xt1f_lrc3l3fXF7cLpyo5bTohUarFVfC9j3tBYBlnWg0R-gkbzjrVKsclVZp0fKuAUBsgNaiY7V0vOVH5HzWHTftGjtX-k92MGMZxaYXE603f2eCX5llfDJcS6gFLQJfZoGYJ2-y8xO6lYshlIkNrcuGNC_Qt9cqKf7eYJ7M2meHw2ADxk02VEJDNcimLujXf9DHuEmh7MBQpRsFrGasUN9nyqWYi3P9rmMKZmun2dlZ2M_7I-7IN_MKcDoDedyagWmv5H9qfwCo1amR</recordid><startdate>20140312</startdate><enddate>20140312</enddate><creator>Cordin, M.</creator><creator>Lechner, B. A. J.</creator><creator>Duerrbeck, S.</creator><creator>Menzel, A.</creator><creator>Bertel, E.</creator><creator>Redinger, J.</creator><creator>Franchini, C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20140312</creationdate><title>Experimental observation of defect pair separation triggering phase transitions</title><author>Cordin, M. ; Lechner, B. A. J. ; Duerrbeck, S. ; Menzel, A. ; Bertel, E. ; Redinger, J. ; Franchini, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-f49ea98384aff1f400a2d4793e0d53732d8b8c15a894b3d700ee70164d265c3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>147/138</topic><topic>639/301/119/2795</topic><topic>639/638/440/950</topic><topic>639/766/119/544</topic><topic>Boiling</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Crystals</topic><topic>Defects</topic><topic>Free energy</topic><topic>Humanities and Social Sciences</topic><topic>Hysteresis</topic><topic>Ice</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>MATERIALS SCIENCE</topic><topic>Melting</topic><topic>multidisciplinary</topic><topic>Nucleation</topic><topic>Nuclei</topic><topic>Phase transitions</topic><topic>Science</topic><topic>Supercooling</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cordin, M.</creatorcontrib><creatorcontrib>Lechner, B. A. J.</creatorcontrib><creatorcontrib>Duerrbeck, S.</creatorcontrib><creatorcontrib>Menzel, A.</creatorcontrib><creatorcontrib>Bertel, E.</creatorcontrib><creatorcontrib>Redinger, J.</creatorcontrib><creatorcontrib>Franchini, C.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Springer Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cordin, M.</au><au>Lechner, B. A. J.</au><au>Duerrbeck, S.</au><au>Menzel, A.</au><au>Bertel, E.</au><au>Redinger, J.</au><au>Franchini, C.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental observation of defect pair separation triggering phase transitions</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2014-03-12</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>4110</spage><epage>4110</epage><pages>4110-4110</pages><artnum>4110</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>First-order phase transitions typically exhibit a significant hysteresis resulting for instance in boiling retardation and supercooling. The hysteresis arises, because nucleation of the new phase is activated. The free-energy change is positive until the nucleus reaches a critical size beyond which further growth is downhill. In practice, the barrier is often circumvented by the presence of heterogeneous nucleation centres, e.g. at vessel walls or seed crystals. Recently, it has been proposed that the homogeneous melting of ice proceeds via separation of defect pairs with a substantially smaller barrier as compared to the mere aggregation of defects. Here we report the observation of an analogous mechanism catalysing a two-dimensional homogeneous phase transition. A similar process is believed to occur in spin systems. This suggests that separation of defect pairs is a common trigger for phase transitions. Partially circumventing the activation barrier it reduces the hysteresis and may promote fluctuations within a temperature range increasing with decreasing dimensionality.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24618704</pmid><doi>10.1038/srep04110</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2014-03, Vol.4 (1), p.4110-4110, Article 4110 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3950641 |
source | PubMed (Medline); Springer Open Access; DOAJ Directory of Open Access Journals; Nature Journals Online; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | 147/138 639/301/119/2795 639/638/440/950 639/766/119/544 Boiling CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Crystals Defects Free energy Humanities and Social Sciences Hysteresis Ice INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY MATERIALS SCIENCE Melting multidisciplinary Nucleation Nuclei Phase transitions Science Supercooling Temperature effects |
title | Experimental observation of defect pair separation triggering phase transitions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20observation%20of%20defect%20pair%20separation%20triggering%20phase%20transitions&rft.jtitle=Scientific%20reports&rft.au=Cordin,%20M.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2014-03-12&rft.volume=4&rft.issue=1&rft.spage=4110&rft.epage=4110&rft.pages=4110-4110&rft.artnum=4110&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep04110&rft_dat=%3Cproquest_pubme%3E1897802622%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1897802622&rft_id=info:pmid/24618704&rfr_iscdi=true |