Anisotropic energy flow and allosteric ligand binding in albumin

Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2014-01, Vol.5 (1), p.3100-3100, Article 3100
Hauptverfasser: Li, Guifeng, Magana, Donny, Dyer, R. Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3100
container_issue 1
container_start_page 3100
container_title Nature communications
container_volume 5
creator Li, Guifeng
Magana, Donny
Dyer, R. Brian
description Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures. Protein allosteric interactions involve a transfer of structural changes to a remote site. Here, the authors study the relationship between allosteric binding and energy flow, showing how the energy transport mechanism conveys binding energy to remote sites.
doi_str_mv 10.1038/ncomms4100
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3949117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1491058286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-101daa17ac357c561781ae7795982a908d290d419e09ba88f59ed932c3d4c1363</originalsourceid><addsrcrecordid>eNplkU1LxDAQhoMoKroXf4AUvIiymmmSbXIRZfELFrzoOaRpWiNtsiatsv_eLOvHqrlMmPfhnRlehA4AnwEm_Nxp33WRAsYbaDfHFMZQ5GRz7b-DRjG-4PSIAE7pNtrJKaUsn7BddHnlbPR98HOrM-NMaBZZ3fr3TLkqU23rY29CklrbLDuldZV1TWZdEsuhs24fbdWqjWb0WffQ08314_RuPHu4vZ9ezcaaYd6PAUOlFBRKE1ZoNoGCgzJFIZjguRKYV7nAFQVhsCgV5zUTphIk16SiGsiE7KGLle98KDtTaeP6oFo5D7ZTYSG9svK34uyzbPybJIIKgCIZHH8aBP86mNjLzkZt2lY544coIWGY8ZwvZx39QV_8EFw6b0nhScEo8ESdrCgdfIzB1N_LAJbLbORPNgk-XF__G_1KIgGnKyAmyTUmrM38b_cB9tmY6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490675418</pqid></control><display><type>article</type><title>Anisotropic energy flow and allosteric ligand binding in albumin</title><source>Springer Nature OA Free Journals</source><creator>Li, Guifeng ; Magana, Donny ; Dyer, R. Brian</creator><creatorcontrib>Li, Guifeng ; Magana, Donny ; Dyer, R. Brian</creatorcontrib><description>Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures. Protein allosteric interactions involve a transfer of structural changes to a remote site. Here, the authors study the relationship between allosteric binding and energy flow, showing how the energy transport mechanism conveys binding energy to remote sites.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms4100</identifier><identifier>PMID: 24445265</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 631/45/535 ; 631/57/2272 ; Allosteric Site ; Animals ; Anisotropy ; Binding sites ; Cattle ; Coloring Agents - chemistry ; Coloring Agents - metabolism ; Dyes ; Fatty acids ; Humanities and Social Sciences ; Ligands ; Metalloporphyrins - metabolism ; multidisciplinary ; Propagation ; Proteins ; Science ; Science (multidisciplinary) ; Serum Albumin, Bovine - metabolism ; Solvents ; Spectrophotometry, Ultraviolet ; Spectroscopy, Fourier Transform Infrared ; Thermal energy ; Thermodynamics</subject><ispartof>Nature communications, 2014-01, Vol.5 (1), p.3100-3100, Article 3100</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Jan 2014</rights><rights>2014 Macmillan Publishers Limited. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-101daa17ac357c561781ae7795982a908d290d419e09ba88f59ed932c3d4c1363</citedby><cites>FETCH-LOGICAL-c508t-101daa17ac357c561781ae7795982a908d290d419e09ba88f59ed932c3d4c1363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3949117/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3949117/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms4100$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24445265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Guifeng</creatorcontrib><creatorcontrib>Magana, Donny</creatorcontrib><creatorcontrib>Dyer, R. Brian</creatorcontrib><title>Anisotropic energy flow and allosteric ligand binding in albumin</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures. Protein allosteric interactions involve a transfer of structural changes to a remote site. Here, the authors study the relationship between allosteric binding and energy flow, showing how the energy transport mechanism conveys binding energy to remote sites.</description><subject>140/125</subject><subject>631/45/535</subject><subject>631/57/2272</subject><subject>Allosteric Site</subject><subject>Animals</subject><subject>Anisotropy</subject><subject>Binding sites</subject><subject>Cattle</subject><subject>Coloring Agents - chemistry</subject><subject>Coloring Agents - metabolism</subject><subject>Dyes</subject><subject>Fatty acids</subject><subject>Humanities and Social Sciences</subject><subject>Ligands</subject><subject>Metalloporphyrins - metabolism</subject><subject>multidisciplinary</subject><subject>Propagation</subject><subject>Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Serum Albumin, Bovine - metabolism</subject><subject>Solvents</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Thermal energy</subject><subject>Thermodynamics</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkU1LxDAQhoMoKroXf4AUvIiymmmSbXIRZfELFrzoOaRpWiNtsiatsv_eLOvHqrlMmPfhnRlehA4AnwEm_Nxp33WRAsYbaDfHFMZQ5GRz7b-DRjG-4PSIAE7pNtrJKaUsn7BddHnlbPR98HOrM-NMaBZZ3fr3TLkqU23rY29CklrbLDuldZV1TWZdEsuhs24fbdWqjWb0WffQ08314_RuPHu4vZ9ezcaaYd6PAUOlFBRKE1ZoNoGCgzJFIZjguRKYV7nAFQVhsCgV5zUTphIk16SiGsiE7KGLle98KDtTaeP6oFo5D7ZTYSG9svK34uyzbPybJIIKgCIZHH8aBP86mNjLzkZt2lY544coIWGY8ZwvZx39QV_8EFw6b0nhScEo8ESdrCgdfIzB1N_LAJbLbORPNgk-XF__G_1KIgGnKyAmyTUmrM38b_cB9tmY6g</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Li, Guifeng</creator><creator>Magana, Donny</creator><creator>Dyer, R. Brian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Anisotropic energy flow and allosteric ligand binding in albumin</title><author>Li, Guifeng ; Magana, Donny ; Dyer, R. Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-101daa17ac357c561781ae7795982a908d290d419e09ba88f59ed932c3d4c1363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>140/125</topic><topic>631/45/535</topic><topic>631/57/2272</topic><topic>Allosteric Site</topic><topic>Animals</topic><topic>Anisotropy</topic><topic>Binding sites</topic><topic>Cattle</topic><topic>Coloring Agents - chemistry</topic><topic>Coloring Agents - metabolism</topic><topic>Dyes</topic><topic>Fatty acids</topic><topic>Humanities and Social Sciences</topic><topic>Ligands</topic><topic>Metalloporphyrins - metabolism</topic><topic>multidisciplinary</topic><topic>Propagation</topic><topic>Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Serum Albumin, Bovine - metabolism</topic><topic>Solvents</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Thermal energy</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guifeng</creatorcontrib><creatorcontrib>Magana, Donny</creatorcontrib><creatorcontrib>Dyer, R. Brian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Guifeng</au><au>Magana, Donny</au><au>Dyer, R. Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic energy flow and allosteric ligand binding in albumin</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>3100</spage><epage>3100</epage><pages>3100-3100</pages><artnum>3100</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Allosteric interactions in proteins generally involve propagation of local structural changes through the protein to a remote site. Anisotropic energy transport is thought to couple the remote sites, but the nature of this process is poorly understood. Here, we report the relationship between energy flow through the structure of bovine serum albumin and allosteric interactions between remote ligand binding sites of the protein. Ultrafast infrared spectroscopy is used to probe the flow of energy through the protein backbone following excitation of a heater dye, a metalloporphyrin or malachite green, bound to different binding sites in the protein. We observe ballistic and anisotropic energy flow through the protein structure following input of thermal energy into the flexible ligand binding sites, without local heating of the rigid helix bundles that connect these sites. This efficient energy transport mechanism enables the allosteric propagation of binding energy through the connecting helix structures. Protein allosteric interactions involve a transfer of structural changes to a remote site. Here, the authors study the relationship between allosteric binding and energy flow, showing how the energy transport mechanism conveys binding energy to remote sites.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24445265</pmid><doi>10.1038/ncomms4100</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-1723
ispartof Nature communications, 2014-01, Vol.5 (1), p.3100-3100, Article 3100
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3949117
source Springer Nature OA Free Journals
subjects 140/125
631/45/535
631/57/2272
Allosteric Site
Animals
Anisotropy
Binding sites
Cattle
Coloring Agents - chemistry
Coloring Agents - metabolism
Dyes
Fatty acids
Humanities and Social Sciences
Ligands
Metalloporphyrins - metabolism
multidisciplinary
Propagation
Proteins
Science
Science (multidisciplinary)
Serum Albumin, Bovine - metabolism
Solvents
Spectrophotometry, Ultraviolet
Spectroscopy, Fourier Transform Infrared
Thermal energy
Thermodynamics
title Anisotropic energy flow and allosteric ligand binding in albumin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20energy%20flow%20and%20allosteric%20ligand%20binding%20in%20albumin&rft.jtitle=Nature%20communications&rft.au=Li,%20Guifeng&rft.date=2014-01-01&rft.volume=5&rft.issue=1&rft.spage=3100&rft.epage=3100&rft.pages=3100-3100&rft.artnum=3100&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms4100&rft_dat=%3Cproquest_C6C%3E1491058286%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490675418&rft_id=info:pmid/24445265&rfr_iscdi=true