An evaluation of high-throughput approaches to QTL mapping in Saccharomyces cerevisiae

Dissecting the molecular basis of quantitative traits is a significant challenge and is essential for understanding complex diseases. Even in model organisms, precisely determining causative genes and their interactions has remained elusive, due in part to difficulty in narrowing intervals to single...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2014-03, Vol.196 (3), p.853-865
Hauptverfasser: Wilkening, Stefan, Lin, Gen, Fritsch, Emilie S, Tekkedil, Manu M, Anders, Simon, Kuehn, Raquel, Nguyen, Michelle, Aiyar, Raeka S, Proctor, Michael, Sakhanenko, Nikita A, Galas, David J, Gagneur, Julien, Deutschbauer, Adam, Steinmetz, Lars M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 865
container_issue 3
container_start_page 853
container_title Genetics (Austin)
container_volume 196
creator Wilkening, Stefan
Lin, Gen
Fritsch, Emilie S
Tekkedil, Manu M
Anders, Simon
Kuehn, Raquel
Nguyen, Michelle
Aiyar, Raeka S
Proctor, Michael
Sakhanenko, Nikita A
Galas, David J
Gagneur, Julien
Deutschbauer, Adam
Steinmetz, Lars M
description Dissecting the molecular basis of quantitative traits is a significant challenge and is essential for understanding complex diseases. Even in model organisms, precisely determining causative genes and their interactions has remained elusive, due in part to difficulty in narrowing intervals to single genes and in detecting epistasis or linked quantitative trait loci. These difficulties are exacerbated by limitations in experimental design, such as low numbers of analyzed individuals or of polymorphisms between parental genomes. We address these challenges by applying three independent high-throughput approaches for QTL mapping to map the genetic variants underlying 11 phenotypes in two genetically distant Saccharomyces cerevisiae strains, namely (1) individual analysis of >700 meiotic segregants, (2) bulk segregant analysis, and (3) reciprocal hemizygosity scanning, a new genome-wide method that we developed. We reveal differences in the performance of each approach and, by combining them, identify eight polymorphic genes that affect eight different phenotypes: colony shape, flocculation, growth on two nonfermentable carbon sources, and resistance to two drugs, salt, and high temperature. Our results demonstrate the power of individual segregant analysis to dissect QTL and address the underestimated contribution of interactions between variants. We also reveal confounding factors like mutations and aneuploidy in pooled approaches, providing valuable lessons for future designs of complex trait mapping studies.
doi_str_mv 10.1534/genetics.113.160291
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3948811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1509412647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-ce088cb91233583d40cf60337c96752d5b5d8aa8b8f3bae25b5270f6a5dea8f63</originalsourceid><addsrcrecordid>eNqNkV2L1TAQhoMo7nr0FwgS8MabHpNMkiY3wrL4BQdEXL0NaZq2WdqkJu2B_fd2ObvL6pVX8_XMMDMvQq8p2VMB_H3vo1-CK3tKYU8lYZo-QedUc6iYBPr0kX-GXpRyTQiRWqjn6IxxqDkIcY5-XUTsj3Zc7RJSxKnDQ-iHahlyWvthXhds5zkn6wZf8JLw96sDnrZUiD0OEf-wzg02p-nGbXXnsz-GEqx_iZ51diz-1Z3doZ-fPl5dfqkO3z5_vbw4VE4AWyrniVKu0ZQBCAUtJ66TBKB2WtaCtaIRrbJWNaqDxnq2xawmnbSi9VZ1Enbow2nuvDaTb52PS7ajmXOYbL4xyQbzdyWGwfTpaEBzpbbH7dC7uwE5_V59WcwUivPjaKNPazFUMK2BKqH_AyWaUyZ5vaFv_0Gv05rj9omNoloyLvUtBSfK5VRK9t3D3pSYW4nNvcRm29ScJN663jw--aHnXlP4AwavpSI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1519624697</pqid></control><display><type>article</type><title>An evaluation of high-throughput approaches to QTL mapping in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Oxford Academic Journals (OUP)</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Wilkening, Stefan ; Lin, Gen ; Fritsch, Emilie S ; Tekkedil, Manu M ; Anders, Simon ; Kuehn, Raquel ; Nguyen, Michelle ; Aiyar, Raeka S ; Proctor, Michael ; Sakhanenko, Nikita A ; Galas, David J ; Gagneur, Julien ; Deutschbauer, Adam ; Steinmetz, Lars M</creator><creatorcontrib>Wilkening, Stefan ; Lin, Gen ; Fritsch, Emilie S ; Tekkedil, Manu M ; Anders, Simon ; Kuehn, Raquel ; Nguyen, Michelle ; Aiyar, Raeka S ; Proctor, Michael ; Sakhanenko, Nikita A ; Galas, David J ; Gagneur, Julien ; Deutschbauer, Adam ; Steinmetz, Lars M</creatorcontrib><description>Dissecting the molecular basis of quantitative traits is a significant challenge and is essential for understanding complex diseases. Even in model organisms, precisely determining causative genes and their interactions has remained elusive, due in part to difficulty in narrowing intervals to single genes and in detecting epistasis or linked quantitative trait loci. These difficulties are exacerbated by limitations in experimental design, such as low numbers of analyzed individuals or of polymorphisms between parental genomes. We address these challenges by applying three independent high-throughput approaches for QTL mapping to map the genetic variants underlying 11 phenotypes in two genetically distant Saccharomyces cerevisiae strains, namely (1) individual analysis of &gt;700 meiotic segregants, (2) bulk segregant analysis, and (3) reciprocal hemizygosity scanning, a new genome-wide method that we developed. We reveal differences in the performance of each approach and, by combining them, identify eight polymorphic genes that affect eight different phenotypes: colony shape, flocculation, growth on two nonfermentable carbon sources, and resistance to two drugs, salt, and high temperature. Our results demonstrate the power of individual segregant analysis to dissect QTL and address the underestimated contribution of interactions between variants. We also reveal confounding factors like mutations and aneuploidy in pooled approaches, providing valuable lessons for future designs of complex trait mapping studies.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.113.160291</identifier><identifier>PMID: 24374355</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Society of America</publisher><subject>Aneuploidy ; Chromosome Mapping ; Genetic Variation ; Genetics ; Genome, Fungal ; Genomics - methods ; Genotype &amp; phenotype ; Investigations ; Mutation ; Phenotype ; Polymorphism ; Quantitative Trait Loci ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Yeast</subject><ispartof>Genetics (Austin), 2014-03, Vol.196 (3), p.853-865</ispartof><rights>Copyright Genetics Society of America Mar 2014</rights><rights>Copyright © 2014 by the Genetics Society of America 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-ce088cb91233583d40cf60337c96752d5b5d8aa8b8f3bae25b5270f6a5dea8f63</citedby><cites>FETCH-LOGICAL-c532t-ce088cb91233583d40cf60337c96752d5b5d8aa8b8f3bae25b5270f6a5dea8f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24374355$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilkening, Stefan</creatorcontrib><creatorcontrib>Lin, Gen</creatorcontrib><creatorcontrib>Fritsch, Emilie S</creatorcontrib><creatorcontrib>Tekkedil, Manu M</creatorcontrib><creatorcontrib>Anders, Simon</creatorcontrib><creatorcontrib>Kuehn, Raquel</creatorcontrib><creatorcontrib>Nguyen, Michelle</creatorcontrib><creatorcontrib>Aiyar, Raeka S</creatorcontrib><creatorcontrib>Proctor, Michael</creatorcontrib><creatorcontrib>Sakhanenko, Nikita A</creatorcontrib><creatorcontrib>Galas, David J</creatorcontrib><creatorcontrib>Gagneur, Julien</creatorcontrib><creatorcontrib>Deutschbauer, Adam</creatorcontrib><creatorcontrib>Steinmetz, Lars M</creatorcontrib><title>An evaluation of high-throughput approaches to QTL mapping in Saccharomyces cerevisiae</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Dissecting the molecular basis of quantitative traits is a significant challenge and is essential for understanding complex diseases. Even in model organisms, precisely determining causative genes and their interactions has remained elusive, due in part to difficulty in narrowing intervals to single genes and in detecting epistasis or linked quantitative trait loci. These difficulties are exacerbated by limitations in experimental design, such as low numbers of analyzed individuals or of polymorphisms between parental genomes. We address these challenges by applying three independent high-throughput approaches for QTL mapping to map the genetic variants underlying 11 phenotypes in two genetically distant Saccharomyces cerevisiae strains, namely (1) individual analysis of &gt;700 meiotic segregants, (2) bulk segregant analysis, and (3) reciprocal hemizygosity scanning, a new genome-wide method that we developed. We reveal differences in the performance of each approach and, by combining them, identify eight polymorphic genes that affect eight different phenotypes: colony shape, flocculation, growth on two nonfermentable carbon sources, and resistance to two drugs, salt, and high temperature. Our results demonstrate the power of individual segregant analysis to dissect QTL and address the underestimated contribution of interactions between variants. We also reveal confounding factors like mutations and aneuploidy in pooled approaches, providing valuable lessons for future designs of complex trait mapping studies.</description><subject>Aneuploidy</subject><subject>Chromosome Mapping</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genome, Fungal</subject><subject>Genomics - methods</subject><subject>Genotype &amp; phenotype</subject><subject>Investigations</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Polymorphism</subject><subject>Quantitative Trait Loci</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Yeast</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkV2L1TAQhoMo7nr0FwgS8MabHpNMkiY3wrL4BQdEXL0NaZq2WdqkJu2B_fd2ObvL6pVX8_XMMDMvQq8p2VMB_H3vo1-CK3tKYU8lYZo-QedUc6iYBPr0kX-GXpRyTQiRWqjn6IxxqDkIcY5-XUTsj3Zc7RJSxKnDQ-iHahlyWvthXhds5zkn6wZf8JLw96sDnrZUiD0OEf-wzg02p-nGbXXnsz-GEqx_iZ51diz-1Z3doZ-fPl5dfqkO3z5_vbw4VE4AWyrniVKu0ZQBCAUtJ66TBKB2WtaCtaIRrbJWNaqDxnq2xawmnbSi9VZ1Enbow2nuvDaTb52PS7ajmXOYbL4xyQbzdyWGwfTpaEBzpbbH7dC7uwE5_V59WcwUivPjaKNPazFUMK2BKqH_AyWaUyZ5vaFv_0Gv05rj9omNoloyLvUtBSfK5VRK9t3D3pSYW4nNvcRm29ScJN663jw--aHnXlP4AwavpSI</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Wilkening, Stefan</creator><creator>Lin, Gen</creator><creator>Fritsch, Emilie S</creator><creator>Tekkedil, Manu M</creator><creator>Anders, Simon</creator><creator>Kuehn, Raquel</creator><creator>Nguyen, Michelle</creator><creator>Aiyar, Raeka S</creator><creator>Proctor, Michael</creator><creator>Sakhanenko, Nikita A</creator><creator>Galas, David J</creator><creator>Gagneur, Julien</creator><creator>Deutschbauer, Adam</creator><creator>Steinmetz, Lars M</creator><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140301</creationdate><title>An evaluation of high-throughput approaches to QTL mapping in Saccharomyces cerevisiae</title><author>Wilkening, Stefan ; Lin, Gen ; Fritsch, Emilie S ; Tekkedil, Manu M ; Anders, Simon ; Kuehn, Raquel ; Nguyen, Michelle ; Aiyar, Raeka S ; Proctor, Michael ; Sakhanenko, Nikita A ; Galas, David J ; Gagneur, Julien ; Deutschbauer, Adam ; Steinmetz, Lars M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-ce088cb91233583d40cf60337c96752d5b5d8aa8b8f3bae25b5270f6a5dea8f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aneuploidy</topic><topic>Chromosome Mapping</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genome, Fungal</topic><topic>Genomics - methods</topic><topic>Genotype &amp; phenotype</topic><topic>Investigations</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Polymorphism</topic><topic>Quantitative Trait Loci</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilkening, Stefan</creatorcontrib><creatorcontrib>Lin, Gen</creatorcontrib><creatorcontrib>Fritsch, Emilie S</creatorcontrib><creatorcontrib>Tekkedil, Manu M</creatorcontrib><creatorcontrib>Anders, Simon</creatorcontrib><creatorcontrib>Kuehn, Raquel</creatorcontrib><creatorcontrib>Nguyen, Michelle</creatorcontrib><creatorcontrib>Aiyar, Raeka S</creatorcontrib><creatorcontrib>Proctor, Michael</creatorcontrib><creatorcontrib>Sakhanenko, Nikita A</creatorcontrib><creatorcontrib>Galas, David J</creatorcontrib><creatorcontrib>Gagneur, Julien</creatorcontrib><creatorcontrib>Deutschbauer, Adam</creatorcontrib><creatorcontrib>Steinmetz, Lars M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilkening, Stefan</au><au>Lin, Gen</au><au>Fritsch, Emilie S</au><au>Tekkedil, Manu M</au><au>Anders, Simon</au><au>Kuehn, Raquel</au><au>Nguyen, Michelle</au><au>Aiyar, Raeka S</au><au>Proctor, Michael</au><au>Sakhanenko, Nikita A</au><au>Galas, David J</au><au>Gagneur, Julien</au><au>Deutschbauer, Adam</au><au>Steinmetz, Lars M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An evaluation of high-throughput approaches to QTL mapping in Saccharomyces cerevisiae</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>196</volume><issue>3</issue><spage>853</spage><epage>865</epage><pages>853-865</pages><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Dissecting the molecular basis of quantitative traits is a significant challenge and is essential for understanding complex diseases. Even in model organisms, precisely determining causative genes and their interactions has remained elusive, due in part to difficulty in narrowing intervals to single genes and in detecting epistasis or linked quantitative trait loci. These difficulties are exacerbated by limitations in experimental design, such as low numbers of analyzed individuals or of polymorphisms between parental genomes. We address these challenges by applying three independent high-throughput approaches for QTL mapping to map the genetic variants underlying 11 phenotypes in two genetically distant Saccharomyces cerevisiae strains, namely (1) individual analysis of &gt;700 meiotic segregants, (2) bulk segregant analysis, and (3) reciprocal hemizygosity scanning, a new genome-wide method that we developed. We reveal differences in the performance of each approach and, by combining them, identify eight polymorphic genes that affect eight different phenotypes: colony shape, flocculation, growth on two nonfermentable carbon sources, and resistance to two drugs, salt, and high temperature. Our results demonstrate the power of individual segregant analysis to dissect QTL and address the underestimated contribution of interactions between variants. We also reveal confounding factors like mutations and aneuploidy in pooled approaches, providing valuable lessons for future designs of complex trait mapping studies.</abstract><cop>United States</cop><pub>Genetics Society of America</pub><pmid>24374355</pmid><doi>10.1534/genetics.113.160291</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-2631
ispartof Genetics (Austin), 2014-03, Vol.196 (3), p.853-865
issn 1943-2631
0016-6731
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3948811
source MEDLINE; Oxford Academic Journals (OUP); Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Aneuploidy
Chromosome Mapping
Genetic Variation
Genetics
Genome, Fungal
Genomics - methods
Genotype & phenotype
Investigations
Mutation
Phenotype
Polymorphism
Quantitative Trait Loci
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Yeast
title An evaluation of high-throughput approaches to QTL mapping in Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20evaluation%20of%20high-throughput%20approaches%20to%20QTL%20mapping%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Genetics%20(Austin)&rft.au=Wilkening,%20Stefan&rft.date=2014-03-01&rft.volume=196&rft.issue=3&rft.spage=853&rft.epage=865&rft.pages=853-865&rft.issn=1943-2631&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.113.160291&rft_dat=%3Cproquest_pubme%3E1509412647%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1519624697&rft_id=info:pmid/24374355&rfr_iscdi=true