Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis

The human intestine is host to an enormously complex, diverse, and vast microbial community-the gut microbiota. The gut microbiome plays a profound role in metabolic processing, energy production, immune and cognitive development, epithelial homeostasis, and so forth. However, the composition and di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental health perspectives 2014-03, Vol.122 (3), p.284-291
Hauptverfasser: Lu, Kun, Abo, Ryan Phillip, Schlieper, Katherine Ann, Graffam, Michelle E, Levine, Stuart, Wishnok, John S, Swenberg, James A, Tannenbaum, Steven R, Fox, James G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue 3
container_start_page 284
container_title Environmental health perspectives
container_volume 122
creator Lu, Kun
Abo, Ryan Phillip
Schlieper, Katherine Ann
Graffam, Michelle E
Levine, Stuart
Wishnok, John S
Swenberg, James A
Tannenbaum, Steven R
Fox, James G
description The human intestine is host to an enormously complex, diverse, and vast microbial community-the gut microbiota. The gut microbiome plays a profound role in metabolic processing, energy production, immune and cognitive development, epithelial homeostasis, and so forth. However, the composition and diversity of the gut microbiome can be readily affected by external factors, which raises the possibility that exposure to toxic environmental chemicals leads to gut microbiome alteration, or dysbiosis. Arsenic exposure affects large human populations worldwide and has been linked to a number of diseases, including cancer, diabetes, and cardiovascular disorders. We investigated the impact of arsenic exposure on the gut microbiome composition and its metabolic profiles. We used an integrated approach combining 16S rRNA gene sequencing and mass spectrometry-based metabolomics profiling to examine the functional impact of arsenic exposure on the gut microbiome. 16S rRNA gene sequencing revealed that arsenic significantly perturbed the gut microbiome composition in C57BL/6 mice after exposure to 10 ppm arsenic for 4 weeks in drinking water. Moreover, metabolomics profiling revealed a concurrent effect, with a number of gut microflora-related metabolites being perturbed in multiple biological matrices. Arsenic exposure not only alters the gut microbiome community at the abundance level but also substantially disturbs its metabolic profiles at the function level. These findings may provide novel insights regarding perturbations of the gut microbiome and its functions as a potential new mechanism by which arsenic exposure leads to or exacerbates human diseases. Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG. 2014. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect 122:284-291; http://dx.doi.org/10.1289/ehp.1307429.
doi_str_mv 10.1289/ehp.1307429
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3948040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A363973876</galeid><sourcerecordid>A363973876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c679t-b405c16bfb931edf106d8770879eb048ca0b649bb09a1eb849146680a3003da33</originalsourceid><addsrcrecordid>eNqN099r1TAUB_AiirtOn3yXgiCK9Jo0aX74IFyGPwaDgb9eQ9Ke9ma0TU1S2d79w023u7krA6UPLcnnHNJ-e7LsKUZrXAr5BrbTGhPEaSnvZStcVWUhZUnvZyuEJC4YZ9VB9iiEM4QQFow9zA5KSjEpBVtlvzY-wGjrHM4nF2YP-QQ-zt6EPG4h7-aYD7b2zlg3QK7HJrcx5ANEbVyfyibvWttDbsfFwdtE0nOEzusIzSXsYHRpL1xW7yqvF3R_EWx4nD1odR_gye5-mH378P7r0afi5PTj8dHmpKgZl7EwFFU1ZqY1kmBoWoxYIzhHgkswiIpaI8OoNAZJjcEIKjFlTCBNECKNJuQwe3fVd5rNAE0NY_S6V5O3g_YXymmr9ndGu1Wd-6mIpAJRlBq83DXw7scMIarBhhr6Xo_g5qAw41xSwir5b1olTEtOlmM9_4ueudmnb7M0ZJjwSmD5R3W6B2XH1qUj1ktTtSGMSE4EZ0kVd6gUAaT3cSMsYe379R0-XQ2kiO4seLVXkEyE89jpOQR1_OXz_9vT7_v2xS27Bd3HbXD9HK0bwz58fQXTXxmCh_YmP4zUMhAqDYTaDUTSz25HfmOvJ4D8BjJmBD8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1661375819</pqid></control><display><type>article</type><title>Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Lu, Kun ; Abo, Ryan Phillip ; Schlieper, Katherine Ann ; Graffam, Michelle E ; Levine, Stuart ; Wishnok, John S ; Swenberg, James A ; Tannenbaum, Steven R ; Fox, James G</creator><creatorcontrib>Lu, Kun ; Abo, Ryan Phillip ; Schlieper, Katherine Ann ; Graffam, Michelle E ; Levine, Stuart ; Wishnok, John S ; Swenberg, James A ; Tannenbaum, Steven R ; Fox, James G</creatorcontrib><description>The human intestine is host to an enormously complex, diverse, and vast microbial community-the gut microbiota. The gut microbiome plays a profound role in metabolic processing, energy production, immune and cognitive development, epithelial homeostasis, and so forth. However, the composition and diversity of the gut microbiome can be readily affected by external factors, which raises the possibility that exposure to toxic environmental chemicals leads to gut microbiome alteration, or dysbiosis. Arsenic exposure affects large human populations worldwide and has been linked to a number of diseases, including cancer, diabetes, and cardiovascular disorders. We investigated the impact of arsenic exposure on the gut microbiome composition and its metabolic profiles. We used an integrated approach combining 16S rRNA gene sequencing and mass spectrometry-based metabolomics profiling to examine the functional impact of arsenic exposure on the gut microbiome. 16S rRNA gene sequencing revealed that arsenic significantly perturbed the gut microbiome composition in C57BL/6 mice after exposure to 10 ppm arsenic for 4 weeks in drinking water. Moreover, metabolomics profiling revealed a concurrent effect, with a number of gut microflora-related metabolites being perturbed in multiple biological matrices. Arsenic exposure not only alters the gut microbiome community at the abundance level but also substantially disturbs its metabolic profiles at the function level. These findings may provide novel insights regarding perturbations of the gut microbiome and its functions as a potential new mechanism by which arsenic exposure leads to or exacerbates human diseases. Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG. 2014. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect 122:284-291; http://dx.doi.org/10.1289/ehp.1307429.</description><identifier>ISSN: 0091-6765</identifier><identifier>EISSN: 1552-9924</identifier><identifier>DOI: 10.1289/ehp.1307429</identifier><identifier>PMID: 24413286</identifier><language>eng</language><publisher>United States: National Institute of Environmental Health Sciences</publisher><subject>Animals ; Arsenic ; Arsenic - toxicity ; Bacteria ; Chromatography ; Chromatography, Liquid ; Diabetes ; Diseases ; DNA Barcoding, Taxonomic ; DNA repair ; Drinking water ; Environmental aspects ; Environmental health ; Experiments ; Exposure ; Female ; Gastrointestinal Tract - drug effects ; Gastrointestinal Tract - microbiology ; Gene expression ; Gene sequencing ; Genomes ; Health ; Health aspects ; Human ; Human populations ; Integrated approach ; Laboratory animals ; Mass Spectrometry ; Metabolism ; Metabolites ; Metabolome ; Metagenome - drug effects ; Mice ; Mice, Inbred C57BL ; Microbiota ; Microbiota (Symbiotic organisms) ; Microbiota - drug effects ; Molecular Sequence Data ; PCB ; Polychlorinated biphenyls ; Polycyclic aromatic hydrocarbons ; Profiling ; RNA, Ribosomal, 16S - genetics ; RNA, Ribosomal, 16S - metabolism ; Scientific imaging ; Sequence Analysis, DNA ; Signal transduction ; Software ; Specific Pathogen-Free Organisms ; Studies ; Taxonomy</subject><ispartof>Environmental health perspectives, 2014-03, Vol.122 (3), p.284-291</ispartof><rights>COPYRIGHT 2014 National Institute of Environmental Health Sciences</rights><rights>Copyright National Institute of Environmental Health Sciences Mar 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c679t-b405c16bfb931edf106d8770879eb048ca0b649bb09a1eb849146680a3003da33</citedby><cites>FETCH-LOGICAL-c679t-b405c16bfb931edf106d8770879eb048ca0b649bb09a1eb849146680a3003da33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3948040/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3948040/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24413286$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Kun</creatorcontrib><creatorcontrib>Abo, Ryan Phillip</creatorcontrib><creatorcontrib>Schlieper, Katherine Ann</creatorcontrib><creatorcontrib>Graffam, Michelle E</creatorcontrib><creatorcontrib>Levine, Stuart</creatorcontrib><creatorcontrib>Wishnok, John S</creatorcontrib><creatorcontrib>Swenberg, James A</creatorcontrib><creatorcontrib>Tannenbaum, Steven R</creatorcontrib><creatorcontrib>Fox, James G</creatorcontrib><title>Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis</title><title>Environmental health perspectives</title><addtitle>Environ Health Perspect</addtitle><description>The human intestine is host to an enormously complex, diverse, and vast microbial community-the gut microbiota. The gut microbiome plays a profound role in metabolic processing, energy production, immune and cognitive development, epithelial homeostasis, and so forth. However, the composition and diversity of the gut microbiome can be readily affected by external factors, which raises the possibility that exposure to toxic environmental chemicals leads to gut microbiome alteration, or dysbiosis. Arsenic exposure affects large human populations worldwide and has been linked to a number of diseases, including cancer, diabetes, and cardiovascular disorders. We investigated the impact of arsenic exposure on the gut microbiome composition and its metabolic profiles. We used an integrated approach combining 16S rRNA gene sequencing and mass spectrometry-based metabolomics profiling to examine the functional impact of arsenic exposure on the gut microbiome. 16S rRNA gene sequencing revealed that arsenic significantly perturbed the gut microbiome composition in C57BL/6 mice after exposure to 10 ppm arsenic for 4 weeks in drinking water. Moreover, metabolomics profiling revealed a concurrent effect, with a number of gut microflora-related metabolites being perturbed in multiple biological matrices. Arsenic exposure not only alters the gut microbiome community at the abundance level but also substantially disturbs its metabolic profiles at the function level. These findings may provide novel insights regarding perturbations of the gut microbiome and its functions as a potential new mechanism by which arsenic exposure leads to or exacerbates human diseases. Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG. 2014. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect 122:284-291; http://dx.doi.org/10.1289/ehp.1307429.</description><subject>Animals</subject><subject>Arsenic</subject><subject>Arsenic - toxicity</subject><subject>Bacteria</subject><subject>Chromatography</subject><subject>Chromatography, Liquid</subject><subject>Diabetes</subject><subject>Diseases</subject><subject>DNA Barcoding, Taxonomic</subject><subject>DNA repair</subject><subject>Drinking water</subject><subject>Environmental aspects</subject><subject>Environmental health</subject><subject>Experiments</subject><subject>Exposure</subject><subject>Female</subject><subject>Gastrointestinal Tract - drug effects</subject><subject>Gastrointestinal Tract - microbiology</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genomes</subject><subject>Health</subject><subject>Health aspects</subject><subject>Human</subject><subject>Human populations</subject><subject>Integrated approach</subject><subject>Laboratory animals</subject><subject>Mass Spectrometry</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolome</subject><subject>Metagenome - drug effects</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Microbiota - drug effects</subject><subject>Molecular Sequence Data</subject><subject>PCB</subject><subject>Polychlorinated biphenyls</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Profiling</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>RNA, Ribosomal, 16S - metabolism</subject><subject>Scientific imaging</subject><subject>Sequence Analysis, DNA</subject><subject>Signal transduction</subject><subject>Software</subject><subject>Specific Pathogen-Free Organisms</subject><subject>Studies</subject><subject>Taxonomy</subject><issn>0091-6765</issn><issn>1552-9924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN099r1TAUB_AiirtOn3yXgiCK9Jo0aX74IFyGPwaDgb9eQ9Ke9ma0TU1S2d79w023u7krA6UPLcnnHNJ-e7LsKUZrXAr5BrbTGhPEaSnvZStcVWUhZUnvZyuEJC4YZ9VB9iiEM4QQFow9zA5KSjEpBVtlvzY-wGjrHM4nF2YP-QQ-zt6EPG4h7-aYD7b2zlg3QK7HJrcx5ANEbVyfyibvWttDbsfFwdtE0nOEzusIzSXsYHRpL1xW7yqvF3R_EWx4nD1odR_gye5-mH378P7r0afi5PTj8dHmpKgZl7EwFFU1ZqY1kmBoWoxYIzhHgkswiIpaI8OoNAZJjcEIKjFlTCBNECKNJuQwe3fVd5rNAE0NY_S6V5O3g_YXymmr9ndGu1Wd-6mIpAJRlBq83DXw7scMIarBhhr6Xo_g5qAw41xSwir5b1olTEtOlmM9_4ueudmnb7M0ZJjwSmD5R3W6B2XH1qUj1ktTtSGMSE4EZ0kVd6gUAaT3cSMsYe379R0-XQ2kiO4seLVXkEyE89jpOQR1_OXz_9vT7_v2xS27Bd3HbXD9HK0bwz58fQXTXxmCh_YmP4zUMhAqDYTaDUTSz25HfmOvJ4D8BjJmBD8</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Lu, Kun</creator><creator>Abo, Ryan Phillip</creator><creator>Schlieper, Katherine Ann</creator><creator>Graffam, Michelle E</creator><creator>Levine, Stuart</creator><creator>Wishnok, John S</creator><creator>Swenberg, James A</creator><creator>Tannenbaum, Steven R</creator><creator>Fox, James G</creator><general>National Institute of Environmental Health Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7RV</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope><scope>7T2</scope><scope>7U2</scope><scope>RC3</scope><scope>KR7</scope><scope>5PM</scope></search><sort><creationdate>20140301</creationdate><title>Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis</title><author>Lu, Kun ; Abo, Ryan Phillip ; Schlieper, Katherine Ann ; Graffam, Michelle E ; Levine, Stuart ; Wishnok, John S ; Swenberg, James A ; Tannenbaum, Steven R ; Fox, James G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c679t-b405c16bfb931edf106d8770879eb048ca0b649bb09a1eb849146680a3003da33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Arsenic</topic><topic>Arsenic - toxicity</topic><topic>Bacteria</topic><topic>Chromatography</topic><topic>Chromatography, Liquid</topic><topic>Diabetes</topic><topic>Diseases</topic><topic>DNA Barcoding, Taxonomic</topic><topic>DNA repair</topic><topic>Drinking water</topic><topic>Environmental aspects</topic><topic>Environmental health</topic><topic>Experiments</topic><topic>Exposure</topic><topic>Female</topic><topic>Gastrointestinal Tract - drug effects</topic><topic>Gastrointestinal Tract - microbiology</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genomes</topic><topic>Health</topic><topic>Health aspects</topic><topic>Human</topic><topic>Human populations</topic><topic>Integrated approach</topic><topic>Laboratory animals</topic><topic>Mass Spectrometry</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolome</topic><topic>Metagenome - drug effects</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Microbiota - drug effects</topic><topic>Molecular Sequence Data</topic><topic>PCB</topic><topic>Polychlorinated biphenyls</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Profiling</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>RNA, Ribosomal, 16S - metabolism</topic><topic>Scientific imaging</topic><topic>Sequence Analysis, DNA</topic><topic>Signal transduction</topic><topic>Software</topic><topic>Specific Pathogen-Free Organisms</topic><topic>Studies</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Kun</creatorcontrib><creatorcontrib>Abo, Ryan Phillip</creatorcontrib><creatorcontrib>Schlieper, Katherine Ann</creatorcontrib><creatorcontrib>Graffam, Michelle E</creatorcontrib><creatorcontrib>Levine, Stuart</creatorcontrib><creatorcontrib>Wishnok, John S</creatorcontrib><creatorcontrib>Swenberg, James A</creatorcontrib><creatorcontrib>Tannenbaum, Steven R</creatorcontrib><creatorcontrib>Fox, James G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Genetics Abstracts</collection><collection>Civil Engineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental health perspectives</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Kun</au><au>Abo, Ryan Phillip</au><au>Schlieper, Katherine Ann</au><au>Graffam, Michelle E</au><au>Levine, Stuart</au><au>Wishnok, John S</au><au>Swenberg, James A</au><au>Tannenbaum, Steven R</au><au>Fox, James G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis</atitle><jtitle>Environmental health perspectives</jtitle><addtitle>Environ Health Perspect</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>122</volume><issue>3</issue><spage>284</spage><epage>291</epage><pages>284-291</pages><issn>0091-6765</issn><eissn>1552-9924</eissn><abstract>The human intestine is host to an enormously complex, diverse, and vast microbial community-the gut microbiota. The gut microbiome plays a profound role in metabolic processing, energy production, immune and cognitive development, epithelial homeostasis, and so forth. However, the composition and diversity of the gut microbiome can be readily affected by external factors, which raises the possibility that exposure to toxic environmental chemicals leads to gut microbiome alteration, or dysbiosis. Arsenic exposure affects large human populations worldwide and has been linked to a number of diseases, including cancer, diabetes, and cardiovascular disorders. We investigated the impact of arsenic exposure on the gut microbiome composition and its metabolic profiles. We used an integrated approach combining 16S rRNA gene sequencing and mass spectrometry-based metabolomics profiling to examine the functional impact of arsenic exposure on the gut microbiome. 16S rRNA gene sequencing revealed that arsenic significantly perturbed the gut microbiome composition in C57BL/6 mice after exposure to 10 ppm arsenic for 4 weeks in drinking water. Moreover, metabolomics profiling revealed a concurrent effect, with a number of gut microflora-related metabolites being perturbed in multiple biological matrices. Arsenic exposure not only alters the gut microbiome community at the abundance level but also substantially disturbs its metabolic profiles at the function level. These findings may provide novel insights regarding perturbations of the gut microbiome and its functions as a potential new mechanism by which arsenic exposure leads to or exacerbates human diseases. Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG. 2014. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect 122:284-291; http://dx.doi.org/10.1289/ehp.1307429.</abstract><cop>United States</cop><pub>National Institute of Environmental Health Sciences</pub><pmid>24413286</pmid><doi>10.1289/ehp.1307429</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-6765
ispartof Environmental health perspectives, 2014-03, Vol.122 (3), p.284-291
issn 0091-6765
1552-9924
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3948040
source MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Arsenic
Arsenic - toxicity
Bacteria
Chromatography
Chromatography, Liquid
Diabetes
Diseases
DNA Barcoding, Taxonomic
DNA repair
Drinking water
Environmental aspects
Environmental health
Experiments
Exposure
Female
Gastrointestinal Tract - drug effects
Gastrointestinal Tract - microbiology
Gene expression
Gene sequencing
Genomes
Health
Health aspects
Human
Human populations
Integrated approach
Laboratory animals
Mass Spectrometry
Metabolism
Metabolites
Metabolome
Metagenome - drug effects
Mice
Mice, Inbred C57BL
Microbiota
Microbiota (Symbiotic organisms)
Microbiota - drug effects
Molecular Sequence Data
PCB
Polychlorinated biphenyls
Polycyclic aromatic hydrocarbons
Profiling
RNA, Ribosomal, 16S - genetics
RNA, Ribosomal, 16S - metabolism
Scientific imaging
Sequence Analysis, DNA
Signal transduction
Software
Specific Pathogen-Free Organisms
Studies
Taxonomy
title Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A19%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arsenic%20exposure%20perturbs%20the%20gut%20microbiome%20and%20its%20metabolic%20profile%20in%20mice:%20an%20integrated%20metagenomics%20and%20metabolomics%20analysis&rft.jtitle=Environmental%20health%20perspectives&rft.au=Lu,%20Kun&rft.date=2014-03-01&rft.volume=122&rft.issue=3&rft.spage=284&rft.epage=291&rft.pages=284-291&rft.issn=0091-6765&rft.eissn=1552-9924&rft_id=info:doi/10.1289/ehp.1307429&rft_dat=%3Cgale_pubme%3EA363973876%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1661375819&rft_id=info:pmid/24413286&rft_galeid=A363973876&rfr_iscdi=true