Molecular Structure of RADA16‑I Designer Self-Assembling Peptide Nanofibers

The designer self-assembling peptide RADA16-I forms nanofiber matrices which have shown great promise for regenerative medicine and three-dimensional cell culture. The RADA16-I amino acid sequence has a β-strand-promoting alternating hydrophobic/charged motif, but arrangement of β-strands into the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2013-09, Vol.7 (9), p.7562-7572
Hauptverfasser: Cormier, Ashley R, Pang, Xiaodong, Zimmerman, Maxwell I, Zhou, Huan-Xiang, Paravastu, Anant K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7572
container_issue 9
container_start_page 7562
container_title ACS nano
container_volume 7
creator Cormier, Ashley R
Pang, Xiaodong
Zimmerman, Maxwell I
Zhou, Huan-Xiang
Paravastu, Anant K
description The designer self-assembling peptide RADA16-I forms nanofiber matrices which have shown great promise for regenerative medicine and three-dimensional cell culture. The RADA16-I amino acid sequence has a β-strand-promoting alternating hydrophobic/charged motif, but arrangement of β-strands into the nanofiber structure has not been previously determined. Here we present a structural model of RADA16-I nanofibers, based on solid-state NMR measurements on samples with different schemes for 13C isotopic labeling. NMR peak positions and line widths indicate an ordered structure composed of β-strands. The NMR data show that the nanofibers are composed of two stacked β-sheets stabilized by a hydrophobic core formed by alanine side chains, consistent with previous proposals. However, the previously proposed antiparallel β-sheet structure is ruled out by measured 13C–13C dipolar couplings. Instead, neighboring β-strands within β-sheets are parallel, with a registry shift that allows cross-strand staggering of oppositely charged arginine and aspartate side chains. The resulting structural model is compared to nanofiber dimensions observed via images taken by transmission electron microscopy and atomic force microscopy. Multiple NMR peaks for each alanine side chain were observed and could be attributed to multiple configurations of side chain packing within a single scheme for intermolecular packing.
doi_str_mv 10.1021/nn401562f
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3946435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762053850</sourcerecordid><originalsourceid>FETCH-LOGICAL-a504t-1751e09e68b4d6537c92b55517de7c766294ec2590451f087a5ccfc19632d7493</originalsourceid><addsrcrecordid>eNptkN1KwzAUgIMobk4vfAHpjaAX1aRtkuZGGJs_g03FH_AupOnp7OiSmbSCd76Cr-iTWNkcCl7lQD6-c_gQ2if4hOCInBqTYEJZVGygLhExC3HKnjbXMyUdtOP9DGPKU862USeKBedpSrtoMrEV6KZSLrivXaPrxkFgi-CuP-wT9vn-MQqG4MupgRaAqgj73sM8q0ozDW5hUZc5BNfK2KLMwPldtFWoysPe6u2hx4vzh8FVOL65HA3641BRnNQh4ZQAFsDSLMkZjbkWUUYpJTwHrjljkUhAR1TghJICp1xRrQtNBIujnCci7qGzpXfRZHPINZjaqUouXDlX7k1aVcq_P6Z8llP7KmORsCSmreBoJXD2pQFfy3npNVSVMmAbLwlnEaZxSnGLHi9R7az3Dor1GoLld365zt-yB7_vWpM_vVvgcAko7eXMNs60mf4RfQFUrow5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762053850</pqid></control><display><type>article</type><title>Molecular Structure of RADA16‑I Designer Self-Assembling Peptide Nanofibers</title><source>MEDLINE</source><source>ACS Publications</source><creator>Cormier, Ashley R ; Pang, Xiaodong ; Zimmerman, Maxwell I ; Zhou, Huan-Xiang ; Paravastu, Anant K</creator><creatorcontrib>Cormier, Ashley R ; Pang, Xiaodong ; Zimmerman, Maxwell I ; Zhou, Huan-Xiang ; Paravastu, Anant K</creatorcontrib><description>The designer self-assembling peptide RADA16-I forms nanofiber matrices which have shown great promise for regenerative medicine and three-dimensional cell culture. The RADA16-I amino acid sequence has a β-strand-promoting alternating hydrophobic/charged motif, but arrangement of β-strands into the nanofiber structure has not been previously determined. Here we present a structural model of RADA16-I nanofibers, based on solid-state NMR measurements on samples with different schemes for 13C isotopic labeling. NMR peak positions and line widths indicate an ordered structure composed of β-strands. The NMR data show that the nanofibers are composed of two stacked β-sheets stabilized by a hydrophobic core formed by alanine side chains, consistent with previous proposals. However, the previously proposed antiparallel β-sheet structure is ruled out by measured 13C–13C dipolar couplings. Instead, neighboring β-strands within β-sheets are parallel, with a registry shift that allows cross-strand staggering of oppositely charged arginine and aspartate side chains. The resulting structural model is compared to nanofiber dimensions observed via images taken by transmission electron microscopy and atomic force microscopy. Multiple NMR peaks for each alanine side chain were observed and could be attributed to multiple configurations of side chain packing within a single scheme for intermolecular packing.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn401562f</identifier><identifier>PMID: 23977885</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alanine ; Amino Acid Sequence ; Charging ; Crystallization ; Drug Design ; Materials Testing ; Molecular Sequence Data ; Molecular structure ; Multiprotein Complexes - chemistry ; Multiprotein Complexes - ultrastructure ; Nanofibers ; Nanofibers - chemistry ; Nanofibers - ultrastructure ; Nanostructure ; Nuclear magnetic resonance ; Peptides ; Peptides - chemistry ; Proposals ; Protein Conformation ; Three dimensional</subject><ispartof>ACS nano, 2013-09, Vol.7 (9), p.7562-7572</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a504t-1751e09e68b4d6537c92b55517de7c766294ec2590451f087a5ccfc19632d7493</citedby><cites>FETCH-LOGICAL-a504t-1751e09e68b4d6537c92b55517de7c766294ec2590451f087a5ccfc19632d7493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn401562f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn401562f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23977885$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cormier, Ashley R</creatorcontrib><creatorcontrib>Pang, Xiaodong</creatorcontrib><creatorcontrib>Zimmerman, Maxwell I</creatorcontrib><creatorcontrib>Zhou, Huan-Xiang</creatorcontrib><creatorcontrib>Paravastu, Anant K</creatorcontrib><title>Molecular Structure of RADA16‑I Designer Self-Assembling Peptide Nanofibers</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The designer self-assembling peptide RADA16-I forms nanofiber matrices which have shown great promise for regenerative medicine and three-dimensional cell culture. The RADA16-I amino acid sequence has a β-strand-promoting alternating hydrophobic/charged motif, but arrangement of β-strands into the nanofiber structure has not been previously determined. Here we present a structural model of RADA16-I nanofibers, based on solid-state NMR measurements on samples with different schemes for 13C isotopic labeling. NMR peak positions and line widths indicate an ordered structure composed of β-strands. The NMR data show that the nanofibers are composed of two stacked β-sheets stabilized by a hydrophobic core formed by alanine side chains, consistent with previous proposals. However, the previously proposed antiparallel β-sheet structure is ruled out by measured 13C–13C dipolar couplings. Instead, neighboring β-strands within β-sheets are parallel, with a registry shift that allows cross-strand staggering of oppositely charged arginine and aspartate side chains. The resulting structural model is compared to nanofiber dimensions observed via images taken by transmission electron microscopy and atomic force microscopy. Multiple NMR peaks for each alanine side chain were observed and could be attributed to multiple configurations of side chain packing within a single scheme for intermolecular packing.</description><subject>Alanine</subject><subject>Amino Acid Sequence</subject><subject>Charging</subject><subject>Crystallization</subject><subject>Drug Design</subject><subject>Materials Testing</subject><subject>Molecular Sequence Data</subject><subject>Molecular structure</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Multiprotein Complexes - ultrastructure</subject><subject>Nanofibers</subject><subject>Nanofibers - chemistry</subject><subject>Nanofibers - ultrastructure</subject><subject>Nanostructure</subject><subject>Nuclear magnetic resonance</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Proposals</subject><subject>Protein Conformation</subject><subject>Three dimensional</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkN1KwzAUgIMobk4vfAHpjaAX1aRtkuZGGJs_g03FH_AupOnp7OiSmbSCd76Cr-iTWNkcCl7lQD6-c_gQ2if4hOCInBqTYEJZVGygLhExC3HKnjbXMyUdtOP9DGPKU862USeKBedpSrtoMrEV6KZSLrivXaPrxkFgi-CuP-wT9vn-MQqG4MupgRaAqgj73sM8q0ozDW5hUZc5BNfK2KLMwPldtFWoysPe6u2hx4vzh8FVOL65HA3641BRnNQh4ZQAFsDSLMkZjbkWUUYpJTwHrjljkUhAR1TghJICp1xRrQtNBIujnCci7qGzpXfRZHPINZjaqUouXDlX7k1aVcq_P6Z8llP7KmORsCSmreBoJXD2pQFfy3npNVSVMmAbLwlnEaZxSnGLHi9R7az3Dor1GoLld365zt-yB7_vWpM_vVvgcAko7eXMNs60mf4RfQFUrow5</recordid><startdate>20130924</startdate><enddate>20130924</enddate><creator>Cormier, Ashley R</creator><creator>Pang, Xiaodong</creator><creator>Zimmerman, Maxwell I</creator><creator>Zhou, Huan-Xiang</creator><creator>Paravastu, Anant K</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20130924</creationdate><title>Molecular Structure of RADA16‑I Designer Self-Assembling Peptide Nanofibers</title><author>Cormier, Ashley R ; Pang, Xiaodong ; Zimmerman, Maxwell I ; Zhou, Huan-Xiang ; Paravastu, Anant K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a504t-1751e09e68b4d6537c92b55517de7c766294ec2590451f087a5ccfc19632d7493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alanine</topic><topic>Amino Acid Sequence</topic><topic>Charging</topic><topic>Crystallization</topic><topic>Drug Design</topic><topic>Materials Testing</topic><topic>Molecular Sequence Data</topic><topic>Molecular structure</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Multiprotein Complexes - ultrastructure</topic><topic>Nanofibers</topic><topic>Nanofibers - chemistry</topic><topic>Nanofibers - ultrastructure</topic><topic>Nanostructure</topic><topic>Nuclear magnetic resonance</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Proposals</topic><topic>Protein Conformation</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cormier, Ashley R</creatorcontrib><creatorcontrib>Pang, Xiaodong</creatorcontrib><creatorcontrib>Zimmerman, Maxwell I</creatorcontrib><creatorcontrib>Zhou, Huan-Xiang</creatorcontrib><creatorcontrib>Paravastu, Anant K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cormier, Ashley R</au><au>Pang, Xiaodong</au><au>Zimmerman, Maxwell I</au><au>Zhou, Huan-Xiang</au><au>Paravastu, Anant K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Structure of RADA16‑I Designer Self-Assembling Peptide Nanofibers</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2013-09-24</date><risdate>2013</risdate><volume>7</volume><issue>9</issue><spage>7562</spage><epage>7572</epage><pages>7562-7572</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The designer self-assembling peptide RADA16-I forms nanofiber matrices which have shown great promise for regenerative medicine and three-dimensional cell culture. The RADA16-I amino acid sequence has a β-strand-promoting alternating hydrophobic/charged motif, but arrangement of β-strands into the nanofiber structure has not been previously determined. Here we present a structural model of RADA16-I nanofibers, based on solid-state NMR measurements on samples with different schemes for 13C isotopic labeling. NMR peak positions and line widths indicate an ordered structure composed of β-strands. The NMR data show that the nanofibers are composed of two stacked β-sheets stabilized by a hydrophobic core formed by alanine side chains, consistent with previous proposals. However, the previously proposed antiparallel β-sheet structure is ruled out by measured 13C–13C dipolar couplings. Instead, neighboring β-strands within β-sheets are parallel, with a registry shift that allows cross-strand staggering of oppositely charged arginine and aspartate side chains. The resulting structural model is compared to nanofiber dimensions observed via images taken by transmission electron microscopy and atomic force microscopy. Multiple NMR peaks for each alanine side chain were observed and could be attributed to multiple configurations of side chain packing within a single scheme for intermolecular packing.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23977885</pmid><doi>10.1021/nn401562f</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2013-09, Vol.7 (9), p.7562-7572
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3946435
source MEDLINE; ACS Publications
subjects Alanine
Amino Acid Sequence
Charging
Crystallization
Drug Design
Materials Testing
Molecular Sequence Data
Molecular structure
Multiprotein Complexes - chemistry
Multiprotein Complexes - ultrastructure
Nanofibers
Nanofibers - chemistry
Nanofibers - ultrastructure
Nanostructure
Nuclear magnetic resonance
Peptides
Peptides - chemistry
Proposals
Protein Conformation
Three dimensional
title Molecular Structure of RADA16‑I Designer Self-Assembling Peptide Nanofibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Structure%20of%20RADA16%E2%80%91I%20Designer%20Self-Assembling%20Peptide%20Nanofibers&rft.jtitle=ACS%20nano&rft.au=Cormier,%20Ashley%20R&rft.date=2013-09-24&rft.volume=7&rft.issue=9&rft.spage=7562&rft.epage=7572&rft.pages=7562-7572&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn401562f&rft_dat=%3Cproquest_pubme%3E1762053850%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762053850&rft_id=info:pmid/23977885&rfr_iscdi=true