Molecular Structure of RADA16‑I Designer Self-Assembling Peptide Nanofibers
The designer self-assembling peptide RADA16-I forms nanofiber matrices which have shown great promise for regenerative medicine and three-dimensional cell culture. The RADA16-I amino acid sequence has a β-strand-promoting alternating hydrophobic/charged motif, but arrangement of β-strands into the n...
Gespeichert in:
Veröffentlicht in: | ACS nano 2013-09, Vol.7 (9), p.7562-7572 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7572 |
---|---|
container_issue | 9 |
container_start_page | 7562 |
container_title | ACS nano |
container_volume | 7 |
creator | Cormier, Ashley R Pang, Xiaodong Zimmerman, Maxwell I Zhou, Huan-Xiang Paravastu, Anant K |
description | The designer self-assembling peptide RADA16-I forms nanofiber matrices which have shown great promise for regenerative medicine and three-dimensional cell culture. The RADA16-I amino acid sequence has a β-strand-promoting alternating hydrophobic/charged motif, but arrangement of β-strands into the nanofiber structure has not been previously determined. Here we present a structural model of RADA16-I nanofibers, based on solid-state NMR measurements on samples with different schemes for 13C isotopic labeling. NMR peak positions and line widths indicate an ordered structure composed of β-strands. The NMR data show that the nanofibers are composed of two stacked β-sheets stabilized by a hydrophobic core formed by alanine side chains, consistent with previous proposals. However, the previously proposed antiparallel β-sheet structure is ruled out by measured 13C–13C dipolar couplings. Instead, neighboring β-strands within β-sheets are parallel, with a registry shift that allows cross-strand staggering of oppositely charged arginine and aspartate side chains. The resulting structural model is compared to nanofiber dimensions observed via images taken by transmission electron microscopy and atomic force microscopy. Multiple NMR peaks for each alanine side chain were observed and could be attributed to multiple configurations of side chain packing within a single scheme for intermolecular packing. |
doi_str_mv | 10.1021/nn401562f |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3946435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762053850</sourcerecordid><originalsourceid>FETCH-LOGICAL-a504t-1751e09e68b4d6537c92b55517de7c766294ec2590451f087a5ccfc19632d7493</originalsourceid><addsrcrecordid>eNptkN1KwzAUgIMobk4vfAHpjaAX1aRtkuZGGJs_g03FH_AupOnp7OiSmbSCd76Cr-iTWNkcCl7lQD6-c_gQ2if4hOCInBqTYEJZVGygLhExC3HKnjbXMyUdtOP9DGPKU862USeKBedpSrtoMrEV6KZSLrivXaPrxkFgi-CuP-wT9vn-MQqG4MupgRaAqgj73sM8q0ozDW5hUZc5BNfK2KLMwPldtFWoysPe6u2hx4vzh8FVOL65HA3641BRnNQh4ZQAFsDSLMkZjbkWUUYpJTwHrjljkUhAR1TghJICp1xRrQtNBIujnCci7qGzpXfRZHPINZjaqUouXDlX7k1aVcq_P6Z8llP7KmORsCSmreBoJXD2pQFfy3npNVSVMmAbLwlnEaZxSnGLHi9R7az3Dor1GoLld365zt-yB7_vWpM_vVvgcAko7eXMNs60mf4RfQFUrow5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762053850</pqid></control><display><type>article</type><title>Molecular Structure of RADA16‑I Designer Self-Assembling Peptide Nanofibers</title><source>MEDLINE</source><source>ACS Publications</source><creator>Cormier, Ashley R ; Pang, Xiaodong ; Zimmerman, Maxwell I ; Zhou, Huan-Xiang ; Paravastu, Anant K</creator><creatorcontrib>Cormier, Ashley R ; Pang, Xiaodong ; Zimmerman, Maxwell I ; Zhou, Huan-Xiang ; Paravastu, Anant K</creatorcontrib><description>The designer self-assembling peptide RADA16-I forms nanofiber matrices which have shown great promise for regenerative medicine and three-dimensional cell culture. The RADA16-I amino acid sequence has a β-strand-promoting alternating hydrophobic/charged motif, but arrangement of β-strands into the nanofiber structure has not been previously determined. Here we present a structural model of RADA16-I nanofibers, based on solid-state NMR measurements on samples with different schemes for 13C isotopic labeling. NMR peak positions and line widths indicate an ordered structure composed of β-strands. The NMR data show that the nanofibers are composed of two stacked β-sheets stabilized by a hydrophobic core formed by alanine side chains, consistent with previous proposals. However, the previously proposed antiparallel β-sheet structure is ruled out by measured 13C–13C dipolar couplings. Instead, neighboring β-strands within β-sheets are parallel, with a registry shift that allows cross-strand staggering of oppositely charged arginine and aspartate side chains. The resulting structural model is compared to nanofiber dimensions observed via images taken by transmission electron microscopy and atomic force microscopy. Multiple NMR peaks for each alanine side chain were observed and could be attributed to multiple configurations of side chain packing within a single scheme for intermolecular packing.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn401562f</identifier><identifier>PMID: 23977885</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alanine ; Amino Acid Sequence ; Charging ; Crystallization ; Drug Design ; Materials Testing ; Molecular Sequence Data ; Molecular structure ; Multiprotein Complexes - chemistry ; Multiprotein Complexes - ultrastructure ; Nanofibers ; Nanofibers - chemistry ; Nanofibers - ultrastructure ; Nanostructure ; Nuclear magnetic resonance ; Peptides ; Peptides - chemistry ; Proposals ; Protein Conformation ; Three dimensional</subject><ispartof>ACS nano, 2013-09, Vol.7 (9), p.7562-7572</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a504t-1751e09e68b4d6537c92b55517de7c766294ec2590451f087a5ccfc19632d7493</citedby><cites>FETCH-LOGICAL-a504t-1751e09e68b4d6537c92b55517de7c766294ec2590451f087a5ccfc19632d7493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn401562f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn401562f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23977885$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cormier, Ashley R</creatorcontrib><creatorcontrib>Pang, Xiaodong</creatorcontrib><creatorcontrib>Zimmerman, Maxwell I</creatorcontrib><creatorcontrib>Zhou, Huan-Xiang</creatorcontrib><creatorcontrib>Paravastu, Anant K</creatorcontrib><title>Molecular Structure of RADA16‑I Designer Self-Assembling Peptide Nanofibers</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The designer self-assembling peptide RADA16-I forms nanofiber matrices which have shown great promise for regenerative medicine and three-dimensional cell culture. The RADA16-I amino acid sequence has a β-strand-promoting alternating hydrophobic/charged motif, but arrangement of β-strands into the nanofiber structure has not been previously determined. Here we present a structural model of RADA16-I nanofibers, based on solid-state NMR measurements on samples with different schemes for 13C isotopic labeling. NMR peak positions and line widths indicate an ordered structure composed of β-strands. The NMR data show that the nanofibers are composed of two stacked β-sheets stabilized by a hydrophobic core formed by alanine side chains, consistent with previous proposals. However, the previously proposed antiparallel β-sheet structure is ruled out by measured 13C–13C dipolar couplings. Instead, neighboring β-strands within β-sheets are parallel, with a registry shift that allows cross-strand staggering of oppositely charged arginine and aspartate side chains. The resulting structural model is compared to nanofiber dimensions observed via images taken by transmission electron microscopy and atomic force microscopy. Multiple NMR peaks for each alanine side chain were observed and could be attributed to multiple configurations of side chain packing within a single scheme for intermolecular packing.</description><subject>Alanine</subject><subject>Amino Acid Sequence</subject><subject>Charging</subject><subject>Crystallization</subject><subject>Drug Design</subject><subject>Materials Testing</subject><subject>Molecular Sequence Data</subject><subject>Molecular structure</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Multiprotein Complexes - ultrastructure</subject><subject>Nanofibers</subject><subject>Nanofibers - chemistry</subject><subject>Nanofibers - ultrastructure</subject><subject>Nanostructure</subject><subject>Nuclear magnetic resonance</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Proposals</subject><subject>Protein Conformation</subject><subject>Three dimensional</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkN1KwzAUgIMobk4vfAHpjaAX1aRtkuZGGJs_g03FH_AupOnp7OiSmbSCd76Cr-iTWNkcCl7lQD6-c_gQ2if4hOCInBqTYEJZVGygLhExC3HKnjbXMyUdtOP9DGPKU862USeKBedpSrtoMrEV6KZSLrivXaPrxkFgi-CuP-wT9vn-MQqG4MupgRaAqgj73sM8q0ozDW5hUZc5BNfK2KLMwPldtFWoysPe6u2hx4vzh8FVOL65HA3641BRnNQh4ZQAFsDSLMkZjbkWUUYpJTwHrjljkUhAR1TghJICp1xRrQtNBIujnCci7qGzpXfRZHPINZjaqUouXDlX7k1aVcq_P6Z8llP7KmORsCSmreBoJXD2pQFfy3npNVSVMmAbLwlnEaZxSnGLHi9R7az3Dor1GoLld365zt-yB7_vWpM_vVvgcAko7eXMNs60mf4RfQFUrow5</recordid><startdate>20130924</startdate><enddate>20130924</enddate><creator>Cormier, Ashley R</creator><creator>Pang, Xiaodong</creator><creator>Zimmerman, Maxwell I</creator><creator>Zhou, Huan-Xiang</creator><creator>Paravastu, Anant K</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20130924</creationdate><title>Molecular Structure of RADA16‑I Designer Self-Assembling Peptide Nanofibers</title><author>Cormier, Ashley R ; Pang, Xiaodong ; Zimmerman, Maxwell I ; Zhou, Huan-Xiang ; Paravastu, Anant K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a504t-1751e09e68b4d6537c92b55517de7c766294ec2590451f087a5ccfc19632d7493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alanine</topic><topic>Amino Acid Sequence</topic><topic>Charging</topic><topic>Crystallization</topic><topic>Drug Design</topic><topic>Materials Testing</topic><topic>Molecular Sequence Data</topic><topic>Molecular structure</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Multiprotein Complexes - ultrastructure</topic><topic>Nanofibers</topic><topic>Nanofibers - chemistry</topic><topic>Nanofibers - ultrastructure</topic><topic>Nanostructure</topic><topic>Nuclear magnetic resonance</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Proposals</topic><topic>Protein Conformation</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cormier, Ashley R</creatorcontrib><creatorcontrib>Pang, Xiaodong</creatorcontrib><creatorcontrib>Zimmerman, Maxwell I</creatorcontrib><creatorcontrib>Zhou, Huan-Xiang</creatorcontrib><creatorcontrib>Paravastu, Anant K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cormier, Ashley R</au><au>Pang, Xiaodong</au><au>Zimmerman, Maxwell I</au><au>Zhou, Huan-Xiang</au><au>Paravastu, Anant K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Structure of RADA16‑I Designer Self-Assembling Peptide Nanofibers</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2013-09-24</date><risdate>2013</risdate><volume>7</volume><issue>9</issue><spage>7562</spage><epage>7572</epage><pages>7562-7572</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The designer self-assembling peptide RADA16-I forms nanofiber matrices which have shown great promise for regenerative medicine and three-dimensional cell culture. The RADA16-I amino acid sequence has a β-strand-promoting alternating hydrophobic/charged motif, but arrangement of β-strands into the nanofiber structure has not been previously determined. Here we present a structural model of RADA16-I nanofibers, based on solid-state NMR measurements on samples with different schemes for 13C isotopic labeling. NMR peak positions and line widths indicate an ordered structure composed of β-strands. The NMR data show that the nanofibers are composed of two stacked β-sheets stabilized by a hydrophobic core formed by alanine side chains, consistent with previous proposals. However, the previously proposed antiparallel β-sheet structure is ruled out by measured 13C–13C dipolar couplings. Instead, neighboring β-strands within β-sheets are parallel, with a registry shift that allows cross-strand staggering of oppositely charged arginine and aspartate side chains. The resulting structural model is compared to nanofiber dimensions observed via images taken by transmission electron microscopy and atomic force microscopy. Multiple NMR peaks for each alanine side chain were observed and could be attributed to multiple configurations of side chain packing within a single scheme for intermolecular packing.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23977885</pmid><doi>10.1021/nn401562f</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2013-09, Vol.7 (9), p.7562-7572 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3946435 |
source | MEDLINE; ACS Publications |
subjects | Alanine Amino Acid Sequence Charging Crystallization Drug Design Materials Testing Molecular Sequence Data Molecular structure Multiprotein Complexes - chemistry Multiprotein Complexes - ultrastructure Nanofibers Nanofibers - chemistry Nanofibers - ultrastructure Nanostructure Nuclear magnetic resonance Peptides Peptides - chemistry Proposals Protein Conformation Three dimensional |
title | Molecular Structure of RADA16‑I Designer Self-Assembling Peptide Nanofibers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Structure%20of%20RADA16%E2%80%91I%20Designer%20Self-Assembling%20Peptide%20Nanofibers&rft.jtitle=ACS%20nano&rft.au=Cormier,%20Ashley%20R&rft.date=2013-09-24&rft.volume=7&rft.issue=9&rft.spage=7562&rft.epage=7572&rft.pages=7562-7572&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn401562f&rft_dat=%3Cproquest_pubme%3E1762053850%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762053850&rft_id=info:pmid/23977885&rfr_iscdi=true |