Poly(ADP-ribose) polymerase-1 modulates Nrf2-dependent transcription
The basic leucine zipper transcription factor Nrf2 has emerged as a master regulator of intracellular redox homeostasis by controlling the expression of a battery of redox-balancing antioxidants and phase II detoxification enzymes. Under oxidative stress conditions, Nrf2 is induced at the protein le...
Gespeichert in:
Veröffentlicht in: | Free radical biology & medicine 2014-02, Vol.67, p.69-80 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 80 |
---|---|
container_issue | |
container_start_page | 69 |
container_title | Free radical biology & medicine |
container_volume | 67 |
creator | Wu, Tongde Wang, Xiao-Jun Tian, Wang Jaramillo, Melba C. Lau, Alexandria Zhang, Donna D. |
description | The basic leucine zipper transcription factor Nrf2 has emerged as a master regulator of intracellular redox homeostasis by controlling the expression of a battery of redox-balancing antioxidants and phase II detoxification enzymes. Under oxidative stress conditions, Nrf2 is induced at the protein level through redox-sensitive modifications on critical cysteine residues in Keap1, a component of an E3 ubiquitin ligase complex that targets Nrf2 for proteasomal degradation. Poly(ADP-ribose) polymerase-1 (PARP-1) is historically known to function in DNA damage detection and repair; however, recently PARP-1 has been shown to play an important role in other biochemical activities, such as DNA methylation and imprinting, insulator activity, chromosome organization, and transcriptional regulation. The exact role of PARP-1 in transcription modulation and the underlying mechanisms remain poorly defined. In this study, we report that PARP-1 forms complexes with the antioxidant response element (ARE) within the promoter region of Nrf2 target genes and upregulates the transcriptional activity of Nrf2. Interestingly, PARP-1 neither physically interacts with Nrf2 nor promotes the expression of Nrf2. In addition, PARP-1 does not target Nrf2 for poly(ADP-ribosyl)ation. Instead, PARP-1 interacts directly with small Maf proteins and the ARE of Nrf2 target genes, which augments ARE-specific DNA-binding of Nrf2 and enhances the transcription of Nrf2 target genes. Collectively, these results suggest that PARP-1 serves as a transcriptional coactivator, upregulating the transcriptional activity of Nrf2 by enhancing the interaction among Nrf2, MafG, and the ARE. |
doi_str_mv | 10.1016/j.freeradbiomed.2013.10.806 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3945083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0891584913014731</els_id><sourcerecordid>24140708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-9b6de5e8ca64083356e290e34eccf92f8f48312ede247026be9c4613c04e790f3</originalsourceid><addsrcrecordid>eNqNkF9LwzAUxYMobk6_ggx80YfWpEm7BEEY2_wDQ_egz6FNbjWjbUrSDfbtTZkOffPpwj33nJP8ELoiOCaYZLfruHQALteFsTXoOMGEBiXmODtCQ8InNGKpyI7REHNBopQzMUBn3q8xxiyl_BQNEkYYnmA-RPOVrXbX0_kqcqawHm7GbVjUId5DRMa11Zsq78CPX1yZRBpaaDQ03bhzeeOVM21nbHOOTsq88nDxPUfo_WHxNnuKlq-Pz7PpMlJMkC4SRaYhBa7yjGFOaZpBIjBQBkqVIil5yTglCWhI2AQnWQFCsYxQhRlMBC7pCN3vc9tNEX6uwkNcXsnWmTp3O2lzI_8qjfmUH3YrqWBp3zhCd_sA5az3DsqDl2DZw5Vr-Qeu7OH2YoAb3Je_6w_eH5rhYLE_gABha8BJrww0CrRxoDqprflX0RdPOpRa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Poly(ADP-ribose) polymerase-1 modulates Nrf2-dependent transcription</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Wu, Tongde ; Wang, Xiao-Jun ; Tian, Wang ; Jaramillo, Melba C. ; Lau, Alexandria ; Zhang, Donna D.</creator><creatorcontrib>Wu, Tongde ; Wang, Xiao-Jun ; Tian, Wang ; Jaramillo, Melba C. ; Lau, Alexandria ; Zhang, Donna D.</creatorcontrib><description>The basic leucine zipper transcription factor Nrf2 has emerged as a master regulator of intracellular redox homeostasis by controlling the expression of a battery of redox-balancing antioxidants and phase II detoxification enzymes. Under oxidative stress conditions, Nrf2 is induced at the protein level through redox-sensitive modifications on critical cysteine residues in Keap1, a component of an E3 ubiquitin ligase complex that targets Nrf2 for proteasomal degradation. Poly(ADP-ribose) polymerase-1 (PARP-1) is historically known to function in DNA damage detection and repair; however, recently PARP-1 has been shown to play an important role in other biochemical activities, such as DNA methylation and imprinting, insulator activity, chromosome organization, and transcriptional regulation. The exact role of PARP-1 in transcription modulation and the underlying mechanisms remain poorly defined. In this study, we report that PARP-1 forms complexes with the antioxidant response element (ARE) within the promoter region of Nrf2 target genes and upregulates the transcriptional activity of Nrf2. Interestingly, PARP-1 neither physically interacts with Nrf2 nor promotes the expression of Nrf2. In addition, PARP-1 does not target Nrf2 for poly(ADP-ribosyl)ation. Instead, PARP-1 interacts directly with small Maf proteins and the ARE of Nrf2 target genes, which augments ARE-specific DNA-binding of Nrf2 and enhances the transcription of Nrf2 target genes. Collectively, these results suggest that PARP-1 serves as a transcriptional coactivator, upregulating the transcriptional activity of Nrf2 by enhancing the interaction among Nrf2, MafG, and the ARE.</description><identifier>ISSN: 0891-5849</identifier><identifier>EISSN: 1873-4596</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2013.10.806</identifier><identifier>PMID: 24140708</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Antioxidant Response Elements ; ARE ; Cell Line, Tumor ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Free radicals ; Gene Expression Regulation ; Humans ; Maf ; MafG Transcription Factor - genetics ; MafG Transcription Factor - metabolism ; Mice ; NF-E2-Related Factor 2 - genetics ; NF-E2-Related Factor 2 - metabolism ; Nrf2 ; Oxidation-Reduction ; PARP-1 ; Poly (ADP-Ribose) Polymerase-1 ; Poly(ADP-ribose) Polymerases - genetics ; Poly(ADP-ribose) Polymerases - metabolism ; Promoter Regions, Genetic ; Protein Binding ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Signal Transduction ; Transcription, Genetic ; Transcriptional coactivator</subject><ispartof>Free radical biology & medicine, 2014-02, Vol.67, p.69-80</ispartof><rights>2013 Elsevier Inc.</rights><rights>2013 Published by Elsevier Inc.</rights><rights>2013 Published by Elsevier Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-9b6de5e8ca64083356e290e34eccf92f8f48312ede247026be9c4613c04e790f3</citedby><cites>FETCH-LOGICAL-c491t-9b6de5e8ca64083356e290e34eccf92f8f48312ede247026be9c4613c04e790f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0891584913014731$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24140708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Tongde</creatorcontrib><creatorcontrib>Wang, Xiao-Jun</creatorcontrib><creatorcontrib>Tian, Wang</creatorcontrib><creatorcontrib>Jaramillo, Melba C.</creatorcontrib><creatorcontrib>Lau, Alexandria</creatorcontrib><creatorcontrib>Zhang, Donna D.</creatorcontrib><title>Poly(ADP-ribose) polymerase-1 modulates Nrf2-dependent transcription</title><title>Free radical biology & medicine</title><addtitle>Free Radic Biol Med</addtitle><description>The basic leucine zipper transcription factor Nrf2 has emerged as a master regulator of intracellular redox homeostasis by controlling the expression of a battery of redox-balancing antioxidants and phase II detoxification enzymes. Under oxidative stress conditions, Nrf2 is induced at the protein level through redox-sensitive modifications on critical cysteine residues in Keap1, a component of an E3 ubiquitin ligase complex that targets Nrf2 for proteasomal degradation. Poly(ADP-ribose) polymerase-1 (PARP-1) is historically known to function in DNA damage detection and repair; however, recently PARP-1 has been shown to play an important role in other biochemical activities, such as DNA methylation and imprinting, insulator activity, chromosome organization, and transcriptional regulation. The exact role of PARP-1 in transcription modulation and the underlying mechanisms remain poorly defined. In this study, we report that PARP-1 forms complexes with the antioxidant response element (ARE) within the promoter region of Nrf2 target genes and upregulates the transcriptional activity of Nrf2. Interestingly, PARP-1 neither physically interacts with Nrf2 nor promotes the expression of Nrf2. In addition, PARP-1 does not target Nrf2 for poly(ADP-ribosyl)ation. Instead, PARP-1 interacts directly with small Maf proteins and the ARE of Nrf2 target genes, which augments ARE-specific DNA-binding of Nrf2 and enhances the transcription of Nrf2 target genes. Collectively, these results suggest that PARP-1 serves as a transcriptional coactivator, upregulating the transcriptional activity of Nrf2 by enhancing the interaction among Nrf2, MafG, and the ARE.</description><subject>Animals</subject><subject>Antioxidant Response Elements</subject><subject>ARE</subject><subject>Cell Line, Tumor</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Free radicals</subject><subject>Gene Expression Regulation</subject><subject>Humans</subject><subject>Maf</subject><subject>MafG Transcription Factor - genetics</subject><subject>MafG Transcription Factor - metabolism</subject><subject>Mice</subject><subject>NF-E2-Related Factor 2 - genetics</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>Nrf2</subject><subject>Oxidation-Reduction</subject><subject>PARP-1</subject><subject>Poly (ADP-Ribose) Polymerase-1</subject><subject>Poly(ADP-ribose) Polymerases - genetics</subject><subject>Poly(ADP-ribose) Polymerases - metabolism</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Signal Transduction</subject><subject>Transcription, Genetic</subject><subject>Transcriptional coactivator</subject><issn>0891-5849</issn><issn>1873-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkF9LwzAUxYMobk6_ggx80YfWpEm7BEEY2_wDQ_egz6FNbjWjbUrSDfbtTZkOffPpwj33nJP8ELoiOCaYZLfruHQALteFsTXoOMGEBiXmODtCQ8InNGKpyI7REHNBopQzMUBn3q8xxiyl_BQNEkYYnmA-RPOVrXbX0_kqcqawHm7GbVjUId5DRMa11Zsq78CPX1yZRBpaaDQ03bhzeeOVM21nbHOOTsq88nDxPUfo_WHxNnuKlq-Pz7PpMlJMkC4SRaYhBa7yjGFOaZpBIjBQBkqVIil5yTglCWhI2AQnWQFCsYxQhRlMBC7pCN3vc9tNEX6uwkNcXsnWmTp3O2lzI_8qjfmUH3YrqWBp3zhCd_sA5az3DsqDl2DZw5Vr-Qeu7OH2YoAb3Je_6w_eH5rhYLE_gABha8BJrww0CrRxoDqprflX0RdPOpRa</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Wu, Tongde</creator><creator>Wang, Xiao-Jun</creator><creator>Tian, Wang</creator><creator>Jaramillo, Melba C.</creator><creator>Lau, Alexandria</creator><creator>Zhang, Donna D.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20140201</creationdate><title>Poly(ADP-ribose) polymerase-1 modulates Nrf2-dependent transcription</title><author>Wu, Tongde ; Wang, Xiao-Jun ; Tian, Wang ; Jaramillo, Melba C. ; Lau, Alexandria ; Zhang, Donna D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-9b6de5e8ca64083356e290e34eccf92f8f48312ede247026be9c4613c04e790f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Antioxidant Response Elements</topic><topic>ARE</topic><topic>Cell Line, Tumor</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Free radicals</topic><topic>Gene Expression Regulation</topic><topic>Humans</topic><topic>Maf</topic><topic>MafG Transcription Factor - genetics</topic><topic>MafG Transcription Factor - metabolism</topic><topic>Mice</topic><topic>NF-E2-Related Factor 2 - genetics</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>Nrf2</topic><topic>Oxidation-Reduction</topic><topic>PARP-1</topic><topic>Poly (ADP-Ribose) Polymerase-1</topic><topic>Poly(ADP-ribose) Polymerases - genetics</topic><topic>Poly(ADP-ribose) Polymerases - metabolism</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Signal Transduction</topic><topic>Transcription, Genetic</topic><topic>Transcriptional coactivator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tongde</creatorcontrib><creatorcontrib>Wang, Xiao-Jun</creatorcontrib><creatorcontrib>Tian, Wang</creatorcontrib><creatorcontrib>Jaramillo, Melba C.</creatorcontrib><creatorcontrib>Lau, Alexandria</creatorcontrib><creatorcontrib>Zhang, Donna D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Free radical biology & medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Tongde</au><au>Wang, Xiao-Jun</au><au>Tian, Wang</au><au>Jaramillo, Melba C.</au><au>Lau, Alexandria</au><au>Zhang, Donna D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(ADP-ribose) polymerase-1 modulates Nrf2-dependent transcription</atitle><jtitle>Free radical biology & medicine</jtitle><addtitle>Free Radic Biol Med</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>67</volume><spage>69</spage><epage>80</epage><pages>69-80</pages><issn>0891-5849</issn><eissn>1873-4596</eissn><abstract>The basic leucine zipper transcription factor Nrf2 has emerged as a master regulator of intracellular redox homeostasis by controlling the expression of a battery of redox-balancing antioxidants and phase II detoxification enzymes. Under oxidative stress conditions, Nrf2 is induced at the protein level through redox-sensitive modifications on critical cysteine residues in Keap1, a component of an E3 ubiquitin ligase complex that targets Nrf2 for proteasomal degradation. Poly(ADP-ribose) polymerase-1 (PARP-1) is historically known to function in DNA damage detection and repair; however, recently PARP-1 has been shown to play an important role in other biochemical activities, such as DNA methylation and imprinting, insulator activity, chromosome organization, and transcriptional regulation. The exact role of PARP-1 in transcription modulation and the underlying mechanisms remain poorly defined. In this study, we report that PARP-1 forms complexes with the antioxidant response element (ARE) within the promoter region of Nrf2 target genes and upregulates the transcriptional activity of Nrf2. Interestingly, PARP-1 neither physically interacts with Nrf2 nor promotes the expression of Nrf2. In addition, PARP-1 does not target Nrf2 for poly(ADP-ribosyl)ation. Instead, PARP-1 interacts directly with small Maf proteins and the ARE of Nrf2 target genes, which augments ARE-specific DNA-binding of Nrf2 and enhances the transcription of Nrf2 target genes. Collectively, these results suggest that PARP-1 serves as a transcriptional coactivator, upregulating the transcriptional activity of Nrf2 by enhancing the interaction among Nrf2, MafG, and the ARE.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24140708</pmid><doi>10.1016/j.freeradbiomed.2013.10.806</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0891-5849 |
ispartof | Free radical biology & medicine, 2014-02, Vol.67, p.69-80 |
issn | 0891-5849 1873-4596 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3945083 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Antioxidant Response Elements ARE Cell Line, Tumor Fibroblasts - cytology Fibroblasts - metabolism Free radicals Gene Expression Regulation Humans Maf MafG Transcription Factor - genetics MafG Transcription Factor - metabolism Mice NF-E2-Related Factor 2 - genetics NF-E2-Related Factor 2 - metabolism Nrf2 Oxidation-Reduction PARP-1 Poly (ADP-Ribose) Polymerase-1 Poly(ADP-ribose) Polymerases - genetics Poly(ADP-ribose) Polymerases - metabolism Promoter Regions, Genetic Protein Binding Repressor Proteins - genetics Repressor Proteins - metabolism Signal Transduction Transcription, Genetic Transcriptional coactivator |
title | Poly(ADP-ribose) polymerase-1 modulates Nrf2-dependent transcription |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(ADP-ribose)%20polymerase-1%20modulates%20Nrf2-dependent%20transcription&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=Wu,%20Tongde&rft.date=2014-02-01&rft.volume=67&rft.spage=69&rft.epage=80&rft.pages=69-80&rft.issn=0891-5849&rft.eissn=1873-4596&rft_id=info:doi/10.1016/j.freeradbiomed.2013.10.806&rft_dat=%3Cpubmed_cross%3E24140708%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24140708&rft_els_id=S0891584913014731&rfr_iscdi=true |