Three tapasin docking sites in TAP cooperate to facilitate transporter stabilization and heterodimerization
The TAP translocates peptide Ags into the lumen of the endoplasmic reticulum for loading onto MHC class I molecules. MHC class I acquires its peptide cargo in the peptide loading complex, an oligomeric complex that the chaperone tapasin organizes by bridging TAP to MHC class I and recruiting accesso...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 2014-03, Vol.192 (5), p.2480-2494 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2494 |
---|---|
container_issue | 5 |
container_start_page | 2480 |
container_title | The Journal of immunology (1950) |
container_volume | 192 |
creator | Leonhardt, Ralf M Abrahimi, Parwiz Mitchell, Susan M Cresswell, Peter |
description | The TAP translocates peptide Ags into the lumen of the endoplasmic reticulum for loading onto MHC class I molecules. MHC class I acquires its peptide cargo in the peptide loading complex, an oligomeric complex that the chaperone tapasin organizes by bridging TAP to MHC class I and recruiting accessory molecules such as ERp57 and calreticulin. Three tapasin binding sites on TAP have been described, two of which are located in the N-terminal domains of TAP1 and TAP2. The third binding site is present in the core transmembrane (TM) domain of TAP1 and is used only by the unassembled subunits. Tapasin is required to promote TAP stability, but through which binding site(s) it is acting is unknown. In particular, the role of tapasin binding to the core TM domain of TAP1 single chains is mysterious because this interaction is lost upon TAP2 association. In this study, we map the respective binding site in TAP1 to the polar face of the amphipathic TM helix TM9 and identify key residues that are essential to establish the interaction. We find that this interaction is dispensable for the peptide transport function but essential to achieve full stability of human TAP1. The interaction is also required for proper heterodimerization of the transporter. Based on similar results obtained using TAP mutants that lack tapasin binding to either N-terminal domain, we conclude that all three tapasin-binding sites in TAP cooperate to achieve high transporter stability and efficient heterodimerization. |
doi_str_mv | 10.4049/jimmunol.1302637 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3943870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1501834513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-23449fac40f5899afc149cd2765bfa508352650a720bd779276e23d5724a12233</originalsourceid><addsrcrecordid>eNpVUT1PHDEQtaKgcJD0qSKXafYy_j43kRAKEAkJiqO2fF4vZ9i1N7YPifx6DBwoqUbzZua9p3kIfSWw5MD1j7swTbuYxiVhQCVTH9CCCAGdlCA_ogUApR1RUh2io1LuAEAC5Z_QIeUCCNFqge7X2-w9rna2JUTcJ3cf4i0uofqCG7A-ucYupdlnW9tawoN1YQz1pcs2ljnl6jMu1W4a_tfWkCK2scdb3_DUh8nnPfwZHQx2LP7Lvh6jm7Nf69OL7vLq_PfpyWXnmJa1o4xz3WQ4DGKltR0c4dr1VEmxGayAFRNUCrCKwqZXSreBp6wXinJLKGXsGP185Z13m8n3zsfmdDRzDpPNjybZYP6fxLA1t-nBMM3ZSkEj-L4nyOnPzpdqplCcH0cbfdoVQ9r3VowL8qwFr6sup1KyH95lCJjnjMxbRmafUTv59q-994O3UNgTP3yR1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1501834513</pqid></control><display><type>article</type><title>Three tapasin docking sites in TAP cooperate to facilitate transporter stabilization and heterodimerization</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Leonhardt, Ralf M ; Abrahimi, Parwiz ; Mitchell, Susan M ; Cresswell, Peter</creator><creatorcontrib>Leonhardt, Ralf M ; Abrahimi, Parwiz ; Mitchell, Susan M ; Cresswell, Peter</creatorcontrib><description>The TAP translocates peptide Ags into the lumen of the endoplasmic reticulum for loading onto MHC class I molecules. MHC class I acquires its peptide cargo in the peptide loading complex, an oligomeric complex that the chaperone tapasin organizes by bridging TAP to MHC class I and recruiting accessory molecules such as ERp57 and calreticulin. Three tapasin binding sites on TAP have been described, two of which are located in the N-terminal domains of TAP1 and TAP2. The third binding site is present in the core transmembrane (TM) domain of TAP1 and is used only by the unassembled subunits. Tapasin is required to promote TAP stability, but through which binding site(s) it is acting is unknown. In particular, the role of tapasin binding to the core TM domain of TAP1 single chains is mysterious because this interaction is lost upon TAP2 association. In this study, we map the respective binding site in TAP1 to the polar face of the amphipathic TM helix TM9 and identify key residues that are essential to establish the interaction. We find that this interaction is dispensable for the peptide transport function but essential to achieve full stability of human TAP1. The interaction is also required for proper heterodimerization of the transporter. Based on similar results obtained using TAP mutants that lack tapasin binding to either N-terminal domain, we conclude that all three tapasin-binding sites in TAP cooperate to achieve high transporter stability and efficient heterodimerization.</description><identifier>ISSN: 0022-1767</identifier><identifier>EISSN: 1550-6606</identifier><identifier>DOI: 10.4049/jimmunol.1302637</identifier><identifier>PMID: 24501197</identifier><language>eng</language><publisher>United States</publisher><subject>ATP Binding Cassette Transporter, Subfamily B, Member 2 ; ATP Binding Cassette Transporter, Subfamily B, Member 3 ; ATP-Binding Cassette Transporters - chemistry ; ATP-Binding Cassette Transporters - genetics ; ATP-Binding Cassette Transporters - immunology ; ATP-Binding Cassette Transporters - metabolism ; Binding Sites ; Calreticulin - chemistry ; Calreticulin - genetics ; Calreticulin - immunology ; Calreticulin - metabolism ; Cell Line, Tumor ; Histocompatibility Antigens Class I - chemistry ; Histocompatibility Antigens Class I - genetics ; Histocompatibility Antigens Class I - immunology ; Histocompatibility Antigens Class I - metabolism ; Humans ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - immunology ; Protein Disulfide-Isomerases - genetics ; Protein Disulfide-Isomerases - immunology ; Protein Multimerization - immunology ; Protein Stability ; Protein Structure, Secondary</subject><ispartof>The Journal of immunology (1950), 2014-03, Vol.192 (5), p.2480-2494</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-23449fac40f5899afc149cd2765bfa508352650a720bd779276e23d5724a12233</citedby><cites>FETCH-LOGICAL-c396t-23449fac40f5899afc149cd2765bfa508352650a720bd779276e23d5724a12233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24501197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leonhardt, Ralf M</creatorcontrib><creatorcontrib>Abrahimi, Parwiz</creatorcontrib><creatorcontrib>Mitchell, Susan M</creatorcontrib><creatorcontrib>Cresswell, Peter</creatorcontrib><title>Three tapasin docking sites in TAP cooperate to facilitate transporter stabilization and heterodimerization</title><title>The Journal of immunology (1950)</title><addtitle>J Immunol</addtitle><description>The TAP translocates peptide Ags into the lumen of the endoplasmic reticulum for loading onto MHC class I molecules. MHC class I acquires its peptide cargo in the peptide loading complex, an oligomeric complex that the chaperone tapasin organizes by bridging TAP to MHC class I and recruiting accessory molecules such as ERp57 and calreticulin. Three tapasin binding sites on TAP have been described, two of which are located in the N-terminal domains of TAP1 and TAP2. The third binding site is present in the core transmembrane (TM) domain of TAP1 and is used only by the unassembled subunits. Tapasin is required to promote TAP stability, but through which binding site(s) it is acting is unknown. In particular, the role of tapasin binding to the core TM domain of TAP1 single chains is mysterious because this interaction is lost upon TAP2 association. In this study, we map the respective binding site in TAP1 to the polar face of the amphipathic TM helix TM9 and identify key residues that are essential to establish the interaction. We find that this interaction is dispensable for the peptide transport function but essential to achieve full stability of human TAP1. The interaction is also required for proper heterodimerization of the transporter. Based on similar results obtained using TAP mutants that lack tapasin binding to either N-terminal domain, we conclude that all three tapasin-binding sites in TAP cooperate to achieve high transporter stability and efficient heterodimerization.</description><subject>ATP Binding Cassette Transporter, Subfamily B, Member 2</subject><subject>ATP Binding Cassette Transporter, Subfamily B, Member 3</subject><subject>ATP-Binding Cassette Transporters - chemistry</subject><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>ATP-Binding Cassette Transporters - immunology</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Binding Sites</subject><subject>Calreticulin - chemistry</subject><subject>Calreticulin - genetics</subject><subject>Calreticulin - immunology</subject><subject>Calreticulin - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Histocompatibility Antigens Class I - chemistry</subject><subject>Histocompatibility Antigens Class I - genetics</subject><subject>Histocompatibility Antigens Class I - immunology</subject><subject>Histocompatibility Antigens Class I - metabolism</subject><subject>Humans</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - immunology</subject><subject>Protein Disulfide-Isomerases - genetics</subject><subject>Protein Disulfide-Isomerases - immunology</subject><subject>Protein Multimerization - immunology</subject><subject>Protein Stability</subject><subject>Protein Structure, Secondary</subject><issn>0022-1767</issn><issn>1550-6606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUT1PHDEQtaKgcJD0qSKXafYy_j43kRAKEAkJiqO2fF4vZ9i1N7YPifx6DBwoqUbzZua9p3kIfSWw5MD1j7swTbuYxiVhQCVTH9CCCAGdlCA_ogUApR1RUh2io1LuAEAC5Z_QIeUCCNFqge7X2-w9rna2JUTcJ3cf4i0uofqCG7A-ucYupdlnW9tawoN1YQz1pcs2ljnl6jMu1W4a_tfWkCK2scdb3_DUh8nnPfwZHQx2LP7Lvh6jm7Nf69OL7vLq_PfpyWXnmJa1o4xz3WQ4DGKltR0c4dr1VEmxGayAFRNUCrCKwqZXSreBp6wXinJLKGXsGP185Z13m8n3zsfmdDRzDpPNjybZYP6fxLA1t-nBMM3ZSkEj-L4nyOnPzpdqplCcH0cbfdoVQ9r3VowL8qwFr6sup1KyH95lCJjnjMxbRmafUTv59q-994O3UNgTP3yR1Q</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Leonhardt, Ralf M</creator><creator>Abrahimi, Parwiz</creator><creator>Mitchell, Susan M</creator><creator>Cresswell, Peter</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140301</creationdate><title>Three tapasin docking sites in TAP cooperate to facilitate transporter stabilization and heterodimerization</title><author>Leonhardt, Ralf M ; Abrahimi, Parwiz ; Mitchell, Susan M ; Cresswell, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-23449fac40f5899afc149cd2765bfa508352650a720bd779276e23d5724a12233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ATP Binding Cassette Transporter, Subfamily B, Member 2</topic><topic>ATP Binding Cassette Transporter, Subfamily B, Member 3</topic><topic>ATP-Binding Cassette Transporters - chemistry</topic><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>ATP-Binding Cassette Transporters - immunology</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Binding Sites</topic><topic>Calreticulin - chemistry</topic><topic>Calreticulin - genetics</topic><topic>Calreticulin - immunology</topic><topic>Calreticulin - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Histocompatibility Antigens Class I - chemistry</topic><topic>Histocompatibility Antigens Class I - genetics</topic><topic>Histocompatibility Antigens Class I - immunology</topic><topic>Histocompatibility Antigens Class I - metabolism</topic><topic>Humans</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - immunology</topic><topic>Protein Disulfide-Isomerases - genetics</topic><topic>Protein Disulfide-Isomerases - immunology</topic><topic>Protein Multimerization - immunology</topic><topic>Protein Stability</topic><topic>Protein Structure, Secondary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leonhardt, Ralf M</creatorcontrib><creatorcontrib>Abrahimi, Parwiz</creatorcontrib><creatorcontrib>Mitchell, Susan M</creatorcontrib><creatorcontrib>Cresswell, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of immunology (1950)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leonhardt, Ralf M</au><au>Abrahimi, Parwiz</au><au>Mitchell, Susan M</au><au>Cresswell, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three tapasin docking sites in TAP cooperate to facilitate transporter stabilization and heterodimerization</atitle><jtitle>The Journal of immunology (1950)</jtitle><addtitle>J Immunol</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>192</volume><issue>5</issue><spage>2480</spage><epage>2494</epage><pages>2480-2494</pages><issn>0022-1767</issn><eissn>1550-6606</eissn><abstract>The TAP translocates peptide Ags into the lumen of the endoplasmic reticulum for loading onto MHC class I molecules. MHC class I acquires its peptide cargo in the peptide loading complex, an oligomeric complex that the chaperone tapasin organizes by bridging TAP to MHC class I and recruiting accessory molecules such as ERp57 and calreticulin. Three tapasin binding sites on TAP have been described, two of which are located in the N-terminal domains of TAP1 and TAP2. The third binding site is present in the core transmembrane (TM) domain of TAP1 and is used only by the unassembled subunits. Tapasin is required to promote TAP stability, but through which binding site(s) it is acting is unknown. In particular, the role of tapasin binding to the core TM domain of TAP1 single chains is mysterious because this interaction is lost upon TAP2 association. In this study, we map the respective binding site in TAP1 to the polar face of the amphipathic TM helix TM9 and identify key residues that are essential to establish the interaction. We find that this interaction is dispensable for the peptide transport function but essential to achieve full stability of human TAP1. The interaction is also required for proper heterodimerization of the transporter. Based on similar results obtained using TAP mutants that lack tapasin binding to either N-terminal domain, we conclude that all three tapasin-binding sites in TAP cooperate to achieve high transporter stability and efficient heterodimerization.</abstract><cop>United States</cop><pmid>24501197</pmid><doi>10.4049/jimmunol.1302637</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1767 |
ispartof | The Journal of immunology (1950), 2014-03, Vol.192 (5), p.2480-2494 |
issn | 0022-1767 1550-6606 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3943870 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | ATP Binding Cassette Transporter, Subfamily B, Member 2 ATP Binding Cassette Transporter, Subfamily B, Member 3 ATP-Binding Cassette Transporters - chemistry ATP-Binding Cassette Transporters - genetics ATP-Binding Cassette Transporters - immunology ATP-Binding Cassette Transporters - metabolism Binding Sites Calreticulin - chemistry Calreticulin - genetics Calreticulin - immunology Calreticulin - metabolism Cell Line, Tumor Histocompatibility Antigens Class I - chemistry Histocompatibility Antigens Class I - genetics Histocompatibility Antigens Class I - immunology Histocompatibility Antigens Class I - metabolism Humans Membrane Transport Proteins - chemistry Membrane Transport Proteins - genetics Membrane Transport Proteins - immunology Protein Disulfide-Isomerases - genetics Protein Disulfide-Isomerases - immunology Protein Multimerization - immunology Protein Stability Protein Structure, Secondary |
title | Three tapasin docking sites in TAP cooperate to facilitate transporter stabilization and heterodimerization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20tapasin%20docking%20sites%20in%20TAP%20cooperate%20to%20facilitate%20transporter%20stabilization%20and%20heterodimerization&rft.jtitle=The%20Journal%20of%20immunology%20(1950)&rft.au=Leonhardt,%20Ralf%20M&rft.date=2014-03-01&rft.volume=192&rft.issue=5&rft.spage=2480&rft.epage=2494&rft.pages=2480-2494&rft.issn=0022-1767&rft.eissn=1550-6606&rft_id=info:doi/10.4049/jimmunol.1302637&rft_dat=%3Cproquest_pubme%3E1501834513%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1501834513&rft_id=info:pmid/24501197&rfr_iscdi=true |