Three tapasin docking sites in TAP cooperate to facilitate transporter stabilization and heterodimerization

The TAP translocates peptide Ags into the lumen of the endoplasmic reticulum for loading onto MHC class I molecules. MHC class I acquires its peptide cargo in the peptide loading complex, an oligomeric complex that the chaperone tapasin organizes by bridging TAP to MHC class I and recruiting accesso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2014-03, Vol.192 (5), p.2480-2494
Hauptverfasser: Leonhardt, Ralf M, Abrahimi, Parwiz, Mitchell, Susan M, Cresswell, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2494
container_issue 5
container_start_page 2480
container_title The Journal of immunology (1950)
container_volume 192
creator Leonhardt, Ralf M
Abrahimi, Parwiz
Mitchell, Susan M
Cresswell, Peter
description The TAP translocates peptide Ags into the lumen of the endoplasmic reticulum for loading onto MHC class I molecules. MHC class I acquires its peptide cargo in the peptide loading complex, an oligomeric complex that the chaperone tapasin organizes by bridging TAP to MHC class I and recruiting accessory molecules such as ERp57 and calreticulin. Three tapasin binding sites on TAP have been described, two of which are located in the N-terminal domains of TAP1 and TAP2. The third binding site is present in the core transmembrane (TM) domain of TAP1 and is used only by the unassembled subunits. Tapasin is required to promote TAP stability, but through which binding site(s) it is acting is unknown. In particular, the role of tapasin binding to the core TM domain of TAP1 single chains is mysterious because this interaction is lost upon TAP2 association. In this study, we map the respective binding site in TAP1 to the polar face of the amphipathic TM helix TM9 and identify key residues that are essential to establish the interaction. We find that this interaction is dispensable for the peptide transport function but essential to achieve full stability of human TAP1. The interaction is also required for proper heterodimerization of the transporter. Based on similar results obtained using TAP mutants that lack tapasin binding to either N-terminal domain, we conclude that all three tapasin-binding sites in TAP cooperate to achieve high transporter stability and efficient heterodimerization.
doi_str_mv 10.4049/jimmunol.1302637
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3943870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1501834513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-23449fac40f5899afc149cd2765bfa508352650a720bd779276e23d5724a12233</originalsourceid><addsrcrecordid>eNpVUT1PHDEQtaKgcJD0qSKXafYy_j43kRAKEAkJiqO2fF4vZ9i1N7YPifx6DBwoqUbzZua9p3kIfSWw5MD1j7swTbuYxiVhQCVTH9CCCAGdlCA_ogUApR1RUh2io1LuAEAC5Z_QIeUCCNFqge7X2-w9rna2JUTcJ3cf4i0uofqCG7A-ucYupdlnW9tawoN1YQz1pcs2ljnl6jMu1W4a_tfWkCK2scdb3_DUh8nnPfwZHQx2LP7Lvh6jm7Nf69OL7vLq_PfpyWXnmJa1o4xz3WQ4DGKltR0c4dr1VEmxGayAFRNUCrCKwqZXSreBp6wXinJLKGXsGP185Z13m8n3zsfmdDRzDpPNjybZYP6fxLA1t-nBMM3ZSkEj-L4nyOnPzpdqplCcH0cbfdoVQ9r3VowL8qwFr6sup1KyH95lCJjnjMxbRmafUTv59q-994O3UNgTP3yR1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1501834513</pqid></control><display><type>article</type><title>Three tapasin docking sites in TAP cooperate to facilitate transporter stabilization and heterodimerization</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Leonhardt, Ralf M ; Abrahimi, Parwiz ; Mitchell, Susan M ; Cresswell, Peter</creator><creatorcontrib>Leonhardt, Ralf M ; Abrahimi, Parwiz ; Mitchell, Susan M ; Cresswell, Peter</creatorcontrib><description>The TAP translocates peptide Ags into the lumen of the endoplasmic reticulum for loading onto MHC class I molecules. MHC class I acquires its peptide cargo in the peptide loading complex, an oligomeric complex that the chaperone tapasin organizes by bridging TAP to MHC class I and recruiting accessory molecules such as ERp57 and calreticulin. Three tapasin binding sites on TAP have been described, two of which are located in the N-terminal domains of TAP1 and TAP2. The third binding site is present in the core transmembrane (TM) domain of TAP1 and is used only by the unassembled subunits. Tapasin is required to promote TAP stability, but through which binding site(s) it is acting is unknown. In particular, the role of tapasin binding to the core TM domain of TAP1 single chains is mysterious because this interaction is lost upon TAP2 association. In this study, we map the respective binding site in TAP1 to the polar face of the amphipathic TM helix TM9 and identify key residues that are essential to establish the interaction. We find that this interaction is dispensable for the peptide transport function but essential to achieve full stability of human TAP1. The interaction is also required for proper heterodimerization of the transporter. Based on similar results obtained using TAP mutants that lack tapasin binding to either N-terminal domain, we conclude that all three tapasin-binding sites in TAP cooperate to achieve high transporter stability and efficient heterodimerization.</description><identifier>ISSN: 0022-1767</identifier><identifier>EISSN: 1550-6606</identifier><identifier>DOI: 10.4049/jimmunol.1302637</identifier><identifier>PMID: 24501197</identifier><language>eng</language><publisher>United States</publisher><subject>ATP Binding Cassette Transporter, Subfamily B, Member 2 ; ATP Binding Cassette Transporter, Subfamily B, Member 3 ; ATP-Binding Cassette Transporters - chemistry ; ATP-Binding Cassette Transporters - genetics ; ATP-Binding Cassette Transporters - immunology ; ATP-Binding Cassette Transporters - metabolism ; Binding Sites ; Calreticulin - chemistry ; Calreticulin - genetics ; Calreticulin - immunology ; Calreticulin - metabolism ; Cell Line, Tumor ; Histocompatibility Antigens Class I - chemistry ; Histocompatibility Antigens Class I - genetics ; Histocompatibility Antigens Class I - immunology ; Histocompatibility Antigens Class I - metabolism ; Humans ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - immunology ; Protein Disulfide-Isomerases - genetics ; Protein Disulfide-Isomerases - immunology ; Protein Multimerization - immunology ; Protein Stability ; Protein Structure, Secondary</subject><ispartof>The Journal of immunology (1950), 2014-03, Vol.192 (5), p.2480-2494</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-23449fac40f5899afc149cd2765bfa508352650a720bd779276e23d5724a12233</citedby><cites>FETCH-LOGICAL-c396t-23449fac40f5899afc149cd2765bfa508352650a720bd779276e23d5724a12233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24501197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leonhardt, Ralf M</creatorcontrib><creatorcontrib>Abrahimi, Parwiz</creatorcontrib><creatorcontrib>Mitchell, Susan M</creatorcontrib><creatorcontrib>Cresswell, Peter</creatorcontrib><title>Three tapasin docking sites in TAP cooperate to facilitate transporter stabilization and heterodimerization</title><title>The Journal of immunology (1950)</title><addtitle>J Immunol</addtitle><description>The TAP translocates peptide Ags into the lumen of the endoplasmic reticulum for loading onto MHC class I molecules. MHC class I acquires its peptide cargo in the peptide loading complex, an oligomeric complex that the chaperone tapasin organizes by bridging TAP to MHC class I and recruiting accessory molecules such as ERp57 and calreticulin. Three tapasin binding sites on TAP have been described, two of which are located in the N-terminal domains of TAP1 and TAP2. The third binding site is present in the core transmembrane (TM) domain of TAP1 and is used only by the unassembled subunits. Tapasin is required to promote TAP stability, but through which binding site(s) it is acting is unknown. In particular, the role of tapasin binding to the core TM domain of TAP1 single chains is mysterious because this interaction is lost upon TAP2 association. In this study, we map the respective binding site in TAP1 to the polar face of the amphipathic TM helix TM9 and identify key residues that are essential to establish the interaction. We find that this interaction is dispensable for the peptide transport function but essential to achieve full stability of human TAP1. The interaction is also required for proper heterodimerization of the transporter. Based on similar results obtained using TAP mutants that lack tapasin binding to either N-terminal domain, we conclude that all three tapasin-binding sites in TAP cooperate to achieve high transporter stability and efficient heterodimerization.</description><subject>ATP Binding Cassette Transporter, Subfamily B, Member 2</subject><subject>ATP Binding Cassette Transporter, Subfamily B, Member 3</subject><subject>ATP-Binding Cassette Transporters - chemistry</subject><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>ATP-Binding Cassette Transporters - immunology</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Binding Sites</subject><subject>Calreticulin - chemistry</subject><subject>Calreticulin - genetics</subject><subject>Calreticulin - immunology</subject><subject>Calreticulin - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Histocompatibility Antigens Class I - chemistry</subject><subject>Histocompatibility Antigens Class I - genetics</subject><subject>Histocompatibility Antigens Class I - immunology</subject><subject>Histocompatibility Antigens Class I - metabolism</subject><subject>Humans</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - immunology</subject><subject>Protein Disulfide-Isomerases - genetics</subject><subject>Protein Disulfide-Isomerases - immunology</subject><subject>Protein Multimerization - immunology</subject><subject>Protein Stability</subject><subject>Protein Structure, Secondary</subject><issn>0022-1767</issn><issn>1550-6606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUT1PHDEQtaKgcJD0qSKXafYy_j43kRAKEAkJiqO2fF4vZ9i1N7YPifx6DBwoqUbzZua9p3kIfSWw5MD1j7swTbuYxiVhQCVTH9CCCAGdlCA_ogUApR1RUh2io1LuAEAC5Z_QIeUCCNFqge7X2-w9rna2JUTcJ3cf4i0uofqCG7A-ucYupdlnW9tawoN1YQz1pcs2ljnl6jMu1W4a_tfWkCK2scdb3_DUh8nnPfwZHQx2LP7Lvh6jm7Nf69OL7vLq_PfpyWXnmJa1o4xz3WQ4DGKltR0c4dr1VEmxGayAFRNUCrCKwqZXSreBp6wXinJLKGXsGP185Z13m8n3zsfmdDRzDpPNjybZYP6fxLA1t-nBMM3ZSkEj-L4nyOnPzpdqplCcH0cbfdoVQ9r3VowL8qwFr6sup1KyH95lCJjnjMxbRmafUTv59q-994O3UNgTP3yR1Q</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Leonhardt, Ralf M</creator><creator>Abrahimi, Parwiz</creator><creator>Mitchell, Susan M</creator><creator>Cresswell, Peter</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140301</creationdate><title>Three tapasin docking sites in TAP cooperate to facilitate transporter stabilization and heterodimerization</title><author>Leonhardt, Ralf M ; Abrahimi, Parwiz ; Mitchell, Susan M ; Cresswell, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-23449fac40f5899afc149cd2765bfa508352650a720bd779276e23d5724a12233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ATP Binding Cassette Transporter, Subfamily B, Member 2</topic><topic>ATP Binding Cassette Transporter, Subfamily B, Member 3</topic><topic>ATP-Binding Cassette Transporters - chemistry</topic><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>ATP-Binding Cassette Transporters - immunology</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Binding Sites</topic><topic>Calreticulin - chemistry</topic><topic>Calreticulin - genetics</topic><topic>Calreticulin - immunology</topic><topic>Calreticulin - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Histocompatibility Antigens Class I - chemistry</topic><topic>Histocompatibility Antigens Class I - genetics</topic><topic>Histocompatibility Antigens Class I - immunology</topic><topic>Histocompatibility Antigens Class I - metabolism</topic><topic>Humans</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - immunology</topic><topic>Protein Disulfide-Isomerases - genetics</topic><topic>Protein Disulfide-Isomerases - immunology</topic><topic>Protein Multimerization - immunology</topic><topic>Protein Stability</topic><topic>Protein Structure, Secondary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leonhardt, Ralf M</creatorcontrib><creatorcontrib>Abrahimi, Parwiz</creatorcontrib><creatorcontrib>Mitchell, Susan M</creatorcontrib><creatorcontrib>Cresswell, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of immunology (1950)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leonhardt, Ralf M</au><au>Abrahimi, Parwiz</au><au>Mitchell, Susan M</au><au>Cresswell, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three tapasin docking sites in TAP cooperate to facilitate transporter stabilization and heterodimerization</atitle><jtitle>The Journal of immunology (1950)</jtitle><addtitle>J Immunol</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>192</volume><issue>5</issue><spage>2480</spage><epage>2494</epage><pages>2480-2494</pages><issn>0022-1767</issn><eissn>1550-6606</eissn><abstract>The TAP translocates peptide Ags into the lumen of the endoplasmic reticulum for loading onto MHC class I molecules. MHC class I acquires its peptide cargo in the peptide loading complex, an oligomeric complex that the chaperone tapasin organizes by bridging TAP to MHC class I and recruiting accessory molecules such as ERp57 and calreticulin. Three tapasin binding sites on TAP have been described, two of which are located in the N-terminal domains of TAP1 and TAP2. The third binding site is present in the core transmembrane (TM) domain of TAP1 and is used only by the unassembled subunits. Tapasin is required to promote TAP stability, but through which binding site(s) it is acting is unknown. In particular, the role of tapasin binding to the core TM domain of TAP1 single chains is mysterious because this interaction is lost upon TAP2 association. In this study, we map the respective binding site in TAP1 to the polar face of the amphipathic TM helix TM9 and identify key residues that are essential to establish the interaction. We find that this interaction is dispensable for the peptide transport function but essential to achieve full stability of human TAP1. The interaction is also required for proper heterodimerization of the transporter. Based on similar results obtained using TAP mutants that lack tapasin binding to either N-terminal domain, we conclude that all three tapasin-binding sites in TAP cooperate to achieve high transporter stability and efficient heterodimerization.</abstract><cop>United States</cop><pmid>24501197</pmid><doi>10.4049/jimmunol.1302637</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1767
ispartof The Journal of immunology (1950), 2014-03, Vol.192 (5), p.2480-2494
issn 0022-1767
1550-6606
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3943870
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects ATP Binding Cassette Transporter, Subfamily B, Member 2
ATP Binding Cassette Transporter, Subfamily B, Member 3
ATP-Binding Cassette Transporters - chemistry
ATP-Binding Cassette Transporters - genetics
ATP-Binding Cassette Transporters - immunology
ATP-Binding Cassette Transporters - metabolism
Binding Sites
Calreticulin - chemistry
Calreticulin - genetics
Calreticulin - immunology
Calreticulin - metabolism
Cell Line, Tumor
Histocompatibility Antigens Class I - chemistry
Histocompatibility Antigens Class I - genetics
Histocompatibility Antigens Class I - immunology
Histocompatibility Antigens Class I - metabolism
Humans
Membrane Transport Proteins - chemistry
Membrane Transport Proteins - genetics
Membrane Transport Proteins - immunology
Protein Disulfide-Isomerases - genetics
Protein Disulfide-Isomerases - immunology
Protein Multimerization - immunology
Protein Stability
Protein Structure, Secondary
title Three tapasin docking sites in TAP cooperate to facilitate transporter stabilization and heterodimerization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20tapasin%20docking%20sites%20in%20TAP%20cooperate%20to%20facilitate%20transporter%20stabilization%20and%20heterodimerization&rft.jtitle=The%20Journal%20of%20immunology%20(1950)&rft.au=Leonhardt,%20Ralf%20M&rft.date=2014-03-01&rft.volume=192&rft.issue=5&rft.spage=2480&rft.epage=2494&rft.pages=2480-2494&rft.issn=0022-1767&rft.eissn=1550-6606&rft_id=info:doi/10.4049/jimmunol.1302637&rft_dat=%3Cproquest_pubme%3E1501834513%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1501834513&rft_id=info:pmid/24501197&rfr_iscdi=true