Success and failure of dead-time models as applied to hybrid pixel detectors in high-flux applications
The performance of a single‐photon‐counting hybrid pixel detector has been investigated at the Australian Synchrotron. Results are compared with the body of accepted analytical models previously validated with other detectors. Detector functionals are valuable for empirical calibration. It is shown...
Gespeichert in:
Veröffentlicht in: | Journal of synchrotron radiation 2013-03, Vol.20 (2), p.347-354 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 354 |
---|---|
container_issue | 2 |
container_start_page | 347 |
container_title | Journal of synchrotron radiation |
container_volume | 20 |
creator | Sobott, B. A. Broennimann, Ch Schmitt, B. Trueb, P. Schneebeli, M. Lee, V. Peake, D. J. Elbracht-Leong, S. Schubert, A. Kirby, N. Boland, M. J. Chantler, C. T. Barnea, Z. Rassool, R. P. |
description | The performance of a single‐photon‐counting hybrid pixel detector has been investigated at the Australian Synchrotron. Results are compared with the body of accepted analytical models previously validated with other detectors. Detector functionals are valuable for empirical calibration. It is shown that the matching of the detector dead‐time with the temporal synchrotron source structure leads to substantial improvements in count rate and linearity of response. Standard implementations are linear up to ∼0.36 MHz pixel−1; the optimized linearity in this configuration has an extended range up to ∼0.71 MHz pixel−1; these are further correctable with a transfer function to ∼1.77 MHz pixel−1. This new approach has wide application both in high‐accuracy fundamental experiments and in standard crystallographic X‐ray fluorescence and other X‐ray measurements. The explicit use of data variance (rather than N1/2 noise) and direct measures of goodness‐of‐fit (χr2) are introduced, raising issues not encountered in previous literature for any detector, and suggesting that these inadequacies of models may apply to most detector types. Specifically, parametrization of models with non‐physical values can lead to remarkable agreement for a range of count‐rate, pulse‐frequency and temporal structure. However, especially when the dead‐time is near resonant with the temporal structure, limitations of these classical models become apparent. Further, a lack of agreement at extreme count rates was evident. |
doi_str_mv | 10.1107/S0909049513000411 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3943545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1288315216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5472-7c9fd79c5127dfa05e033663d703d7742902ab760e24beb42a807f06c41af61e3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSMEog_4AWxQJDZsAteveLJBqioolKogDajAxvLYNx0XJw52Umb-PUYpowKL6tqypfudo2ufonhC4AUhIF8uocnFG0EYAHBC7hX7pAaohJTi_q37XnGQ0hUAqSVlD4s9yjihvGH7RbucjMGUSt3bstXOTxHL0JYWta1G12HZBYs-9_MaBu_QlmMo19tVdLYc3AZ9Zkc0Y4ipdH25dpfrqvXTZsaNHl3o06PiQat9wsc352Hx-c3rT8dvq7MPJ--Oj84qI7iklTRNa2VjBKHSthoEAmN1zayEvCWnDVC9kjUg5StccaoXIFuoDSe6rQmyw-LV7DtMqw6twX6M2qshuk7HrQraqb87vVury3CtWMOZ4CIbPL8xiOHHhGlUnUsGvdc9hikpwmguyCPcjdLFghFBSZ3RZ_-gV2GKff6JmeIgWZMpMlMmhpQitru5Cajfgav_As-ap7cfvFP8STgDixn46Txu73ZUp8uvF0cCKM3Sapa6NOJmJ9Xxu6olk0JdnJ-oU37Ov7z_uFTf2C8fo8TM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1288340739</pqid></control><display><type>article</type><title>Success and failure of dead-time models as applied to hybrid pixel detectors in high-flux applications</title><source>Wiley Online Library Open Access</source><creator>Sobott, B. A. ; Broennimann, Ch ; Schmitt, B. ; Trueb, P. ; Schneebeli, M. ; Lee, V. ; Peake, D. J. ; Elbracht-Leong, S. ; Schubert, A. ; Kirby, N. ; Boland, M. J. ; Chantler, C. T. ; Barnea, Z. ; Rassool, R. P.</creator><creatorcontrib>Sobott, B. A. ; Broennimann, Ch ; Schmitt, B. ; Trueb, P. ; Schneebeli, M. ; Lee, V. ; Peake, D. J. ; Elbracht-Leong, S. ; Schubert, A. ; Kirby, N. ; Boland, M. J. ; Chantler, C. T. ; Barnea, Z. ; Rassool, R. P.</creatorcontrib><description>The performance of a single‐photon‐counting hybrid pixel detector has been investigated at the Australian Synchrotron. Results are compared with the body of accepted analytical models previously validated with other detectors. Detector functionals are valuable for empirical calibration. It is shown that the matching of the detector dead‐time with the temporal synchrotron source structure leads to substantial improvements in count rate and linearity of response. Standard implementations are linear up to ∼0.36 MHz pixel−1; the optimized linearity in this configuration has an extended range up to ∼0.71 MHz pixel−1; these are further correctable with a transfer function to ∼1.77 MHz pixel−1. This new approach has wide application both in high‐accuracy fundamental experiments and in standard crystallographic X‐ray fluorescence and other X‐ray measurements. The explicit use of data variance (rather than N1/2 noise) and direct measures of goodness‐of‐fit (χr2) are introduced, raising issues not encountered in previous literature for any detector, and suggesting that these inadequacies of models may apply to most detector types. Specifically, parametrization of models with non‐physical values can lead to remarkable agreement for a range of count‐rate, pulse‐frequency and temporal structure. However, especially when the dead‐time is near resonant with the temporal structure, limitations of these classical models become apparent. Further, a lack of agreement at extreme count rates was evident.</description><identifier>ISSN: 1600-5775</identifier><identifier>ISSN: 0909-0495</identifier><identifier>EISSN: 1600-5775</identifier><identifier>DOI: 10.1107/S0909049513000411</identifier><identifier>PMID: 23412493</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Counting ; dead-time ; Detectors ; hybrid pixel detector ; Linearity ; Pixels ; Research Papers ; single-photon counting ; Studies ; synchrotron fill pattern ; Synchrotrons ; Temporal logic ; X-rays</subject><ispartof>Journal of synchrotron radiation, 2013-03, Vol.20 (2), p.347-354</ispartof><rights>International Union of Crystallography, 2013</rights><rights>B. A. Sobott et al. 2013 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5472-7c9fd79c5127dfa05e033663d703d7742902ab760e24beb42a807f06c41af61e3</citedby><cites>FETCH-LOGICAL-c5472-7c9fd79c5127dfa05e033663d703d7742902ab760e24beb42a807f06c41af61e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943545/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943545/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1107%2FS0909049513000411$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23412493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sobott, B. A.</creatorcontrib><creatorcontrib>Broennimann, Ch</creatorcontrib><creatorcontrib>Schmitt, B.</creatorcontrib><creatorcontrib>Trueb, P.</creatorcontrib><creatorcontrib>Schneebeli, M.</creatorcontrib><creatorcontrib>Lee, V.</creatorcontrib><creatorcontrib>Peake, D. J.</creatorcontrib><creatorcontrib>Elbracht-Leong, S.</creatorcontrib><creatorcontrib>Schubert, A.</creatorcontrib><creatorcontrib>Kirby, N.</creatorcontrib><creatorcontrib>Boland, M. J.</creatorcontrib><creatorcontrib>Chantler, C. T.</creatorcontrib><creatorcontrib>Barnea, Z.</creatorcontrib><creatorcontrib>Rassool, R. P.</creatorcontrib><title>Success and failure of dead-time models as applied to hybrid pixel detectors in high-flux applications</title><title>Journal of synchrotron radiation</title><addtitle>J. Synchrotron Rad</addtitle><description>The performance of a single‐photon‐counting hybrid pixel detector has been investigated at the Australian Synchrotron. Results are compared with the body of accepted analytical models previously validated with other detectors. Detector functionals are valuable for empirical calibration. It is shown that the matching of the detector dead‐time with the temporal synchrotron source structure leads to substantial improvements in count rate and linearity of response. Standard implementations are linear up to ∼0.36 MHz pixel−1; the optimized linearity in this configuration has an extended range up to ∼0.71 MHz pixel−1; these are further correctable with a transfer function to ∼1.77 MHz pixel−1. This new approach has wide application both in high‐accuracy fundamental experiments and in standard crystallographic X‐ray fluorescence and other X‐ray measurements. The explicit use of data variance (rather than N1/2 noise) and direct measures of goodness‐of‐fit (χr2) are introduced, raising issues not encountered in previous literature for any detector, and suggesting that these inadequacies of models may apply to most detector types. Specifically, parametrization of models with non‐physical values can lead to remarkable agreement for a range of count‐rate, pulse‐frequency and temporal structure. However, especially when the dead‐time is near resonant with the temporal structure, limitations of these classical models become apparent. Further, a lack of agreement at extreme count rates was evident.</description><subject>Counting</subject><subject>dead-time</subject><subject>Detectors</subject><subject>hybrid pixel detector</subject><subject>Linearity</subject><subject>Pixels</subject><subject>Research Papers</subject><subject>single-photon counting</subject><subject>Studies</subject><subject>synchrotron fill pattern</subject><subject>Synchrotrons</subject><subject>Temporal logic</subject><subject>X-rays</subject><issn>1600-5775</issn><issn>0909-0495</issn><issn>1600-5775</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAUhSMEog_4AWxQJDZsAteveLJBqioolKogDajAxvLYNx0XJw52Umb-PUYpowKL6tqypfudo2ufonhC4AUhIF8uocnFG0EYAHBC7hX7pAaohJTi_q37XnGQ0hUAqSVlD4s9yjihvGH7RbucjMGUSt3bstXOTxHL0JYWta1G12HZBYs-9_MaBu_QlmMo19tVdLYc3AZ9Zkc0Y4ipdH25dpfrqvXTZsaNHl3o06PiQat9wsc352Hx-c3rT8dvq7MPJ--Oj84qI7iklTRNa2VjBKHSthoEAmN1zayEvCWnDVC9kjUg5StccaoXIFuoDSe6rQmyw-LV7DtMqw6twX6M2qshuk7HrQraqb87vVury3CtWMOZ4CIbPL8xiOHHhGlUnUsGvdc9hikpwmguyCPcjdLFghFBSZ3RZ_-gV2GKff6JmeIgWZMpMlMmhpQitru5Cajfgav_As-ap7cfvFP8STgDixn46Txu73ZUp8uvF0cCKM3Sapa6NOJmJ9Xxu6olk0JdnJ-oU37Ov7z_uFTf2C8fo8TM</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Sobott, B. A.</creator><creator>Broennimann, Ch</creator><creator>Schmitt, B.</creator><creator>Trueb, P.</creator><creator>Schneebeli, M.</creator><creator>Lee, V.</creator><creator>Peake, D. J.</creator><creator>Elbracht-Leong, S.</creator><creator>Schubert, A.</creator><creator>Kirby, N.</creator><creator>Boland, M. J.</creator><creator>Chantler, C. T.</creator><creator>Barnea, Z.</creator><creator>Rassool, R. P.</creator><general>International Union of Crystallography</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201303</creationdate><title>Success and failure of dead-time models as applied to hybrid pixel detectors in high-flux applications</title><author>Sobott, B. A. ; Broennimann, Ch ; Schmitt, B. ; Trueb, P. ; Schneebeli, M. ; Lee, V. ; Peake, D. J. ; Elbracht-Leong, S. ; Schubert, A. ; Kirby, N. ; Boland, M. J. ; Chantler, C. T. ; Barnea, Z. ; Rassool, R. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5472-7c9fd79c5127dfa05e033663d703d7742902ab760e24beb42a807f06c41af61e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Counting</topic><topic>dead-time</topic><topic>Detectors</topic><topic>hybrid pixel detector</topic><topic>Linearity</topic><topic>Pixels</topic><topic>Research Papers</topic><topic>single-photon counting</topic><topic>Studies</topic><topic>synchrotron fill pattern</topic><topic>Synchrotrons</topic><topic>Temporal logic</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sobott, B. A.</creatorcontrib><creatorcontrib>Broennimann, Ch</creatorcontrib><creatorcontrib>Schmitt, B.</creatorcontrib><creatorcontrib>Trueb, P.</creatorcontrib><creatorcontrib>Schneebeli, M.</creatorcontrib><creatorcontrib>Lee, V.</creatorcontrib><creatorcontrib>Peake, D. J.</creatorcontrib><creatorcontrib>Elbracht-Leong, S.</creatorcontrib><creatorcontrib>Schubert, A.</creatorcontrib><creatorcontrib>Kirby, N.</creatorcontrib><creatorcontrib>Boland, M. J.</creatorcontrib><creatorcontrib>Chantler, C. T.</creatorcontrib><creatorcontrib>Barnea, Z.</creatorcontrib><creatorcontrib>Rassool, R. P.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of synchrotron radiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sobott, B. A.</au><au>Broennimann, Ch</au><au>Schmitt, B.</au><au>Trueb, P.</au><au>Schneebeli, M.</au><au>Lee, V.</au><au>Peake, D. J.</au><au>Elbracht-Leong, S.</au><au>Schubert, A.</au><au>Kirby, N.</au><au>Boland, M. J.</au><au>Chantler, C. T.</au><au>Barnea, Z.</au><au>Rassool, R. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Success and failure of dead-time models as applied to hybrid pixel detectors in high-flux applications</atitle><jtitle>Journal of synchrotron radiation</jtitle><addtitle>J. Synchrotron Rad</addtitle><date>2013-03</date><risdate>2013</risdate><volume>20</volume><issue>2</issue><spage>347</spage><epage>354</epage><pages>347-354</pages><issn>1600-5775</issn><issn>0909-0495</issn><eissn>1600-5775</eissn><abstract>The performance of a single‐photon‐counting hybrid pixel detector has been investigated at the Australian Synchrotron. Results are compared with the body of accepted analytical models previously validated with other detectors. Detector functionals are valuable for empirical calibration. It is shown that the matching of the detector dead‐time with the temporal synchrotron source structure leads to substantial improvements in count rate and linearity of response. Standard implementations are linear up to ∼0.36 MHz pixel−1; the optimized linearity in this configuration has an extended range up to ∼0.71 MHz pixel−1; these are further correctable with a transfer function to ∼1.77 MHz pixel−1. This new approach has wide application both in high‐accuracy fundamental experiments and in standard crystallographic X‐ray fluorescence and other X‐ray measurements. The explicit use of data variance (rather than N1/2 noise) and direct measures of goodness‐of‐fit (χr2) are introduced, raising issues not encountered in previous literature for any detector, and suggesting that these inadequacies of models may apply to most detector types. Specifically, parametrization of models with non‐physical values can lead to remarkable agreement for a range of count‐rate, pulse‐frequency and temporal structure. However, especially when the dead‐time is near resonant with the temporal structure, limitations of these classical models become apparent. Further, a lack of agreement at extreme count rates was evident.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>23412493</pmid><doi>10.1107/S0909049513000411</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1600-5775 |
ispartof | Journal of synchrotron radiation, 2013-03, Vol.20 (2), p.347-354 |
issn | 1600-5775 0909-0495 1600-5775 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3943545 |
source | Wiley Online Library Open Access |
subjects | Counting dead-time Detectors hybrid pixel detector Linearity Pixels Research Papers single-photon counting Studies synchrotron fill pattern Synchrotrons Temporal logic X-rays |
title | Success and failure of dead-time models as applied to hybrid pixel detectors in high-flux applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Success%20and%20failure%20of%20dead-time%20models%20as%20applied%20to%20hybrid%20pixel%20detectors%20in%20high-flux%20applications&rft.jtitle=Journal%20of%20synchrotron%20radiation&rft.au=Sobott,%20B.%20A.&rft.date=2013-03&rft.volume=20&rft.issue=2&rft.spage=347&rft.epage=354&rft.pages=347-354&rft.issn=1600-5775&rft.eissn=1600-5775&rft_id=info:doi/10.1107/S0909049513000411&rft_dat=%3Cproquest_24P%3E1288315216%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1288340739&rft_id=info:pmid/23412493&rfr_iscdi=true |