Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production

Spinal muscular atrophy (SMA) is a genetic disorder caused by the deletion of the survival motor neuron 1 (SMN1) gene that leads to loss of motor neurons in the spinal cord. Although motor neurons are selectively lost during SMA pathology, selective replacement of SMN in motor neurons does not lead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glia 2013-09, Vol.61 (9), p.1418-1428
Hauptverfasser: McGivern, Jered V., Patitucci, Teresa N., Nord, Joshua A., Barabas, Marie-Elizabeth A., Stucky, Cheryl L., Ebert, Allison D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1428
container_issue 9
container_start_page 1418
container_title Glia
container_volume 61
creator McGivern, Jered V.
Patitucci, Teresa N.
Nord, Joshua A.
Barabas, Marie-Elizabeth A.
Stucky, Cheryl L.
Ebert, Allison D.
description Spinal muscular atrophy (SMA) is a genetic disorder caused by the deletion of the survival motor neuron 1 (SMN1) gene that leads to loss of motor neurons in the spinal cord. Although motor neurons are selectively lost during SMA pathology, selective replacement of SMN in motor neurons does not lead to full rescue in mouse models. Due to the ubiquitous expression of SMN, it is likely that other cell types besides motor neurons are affected by its disruption and therefore may contribute to disease pathology. Here we show that astrocytes in SMAΔ7 mouse spinal cord and from SMA‐induced pluripotent stem cells exhibit morphological and cellular changes indicative of activation before overt motor neuron loss. Furthermore, our in vitro studies show mis‐regulation of basal calcium and decreased response to adenosine triphosphate stimulation indicating abnormal astrocyte function. Together, for the first time, these data show early disruptions in astrocytes that may contribute to SMA disease pathology.
doi_str_mv 10.1002/glia.22522
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3941074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3028560771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5852-e61a4f8e225f2ea524120e0736b76db74b8361a40650b14ea8d5612878d549ac3</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EokvhwgdAlrggpBT_jZMLUlXBttIKDgX1aE0cZ9etEwc7od1vj7fbroAD4jQe-_eeZvwQek3JCSWEfVh7ByeMScaeoAUldVVQysunaEGqWhRU1PQIvUjpmhCaG_UcHTFe8bqW5QLdXI5uAI_7OZnZQ8QwxTButhhSPpjtZBO2dxvXuAlDM4TYZ9iAN27ucbTrrJlcGDAMbW7b2dgWr2O4nTa4AzOFiMcY8vUOeomedeCTffVQj9H3z5--nZ0Xq6_Li7PTVWFkJVlhSwqiq2zeqGMWJBOUEUsULxtVto0STcV3CCklaaiwULWypKxSuYoaDD9GH_e-49z0tjV2mCJ4PUbXQ9zqAE7_-TK4jV6Hn5rXghIlssG7B4MYfsw2Tbp3yVjvYbBhTpoKLgjLaP0fKJUl4UTJjL79C70Oc8yff08xIVS2zNT7PWViSCna7jA3JXoXt97Fre_jzvCb3zc9oI_5ZoDugVvn7fYfVnq5ujh9NC32Gpcme3fQQLzRpeJK6qsvS315fsWkqKgm_BcqAsVe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1412447210</pqid></control><display><type>article</type><title>Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>McGivern, Jered V. ; Patitucci, Teresa N. ; Nord, Joshua A. ; Barabas, Marie-Elizabeth A. ; Stucky, Cheryl L. ; Ebert, Allison D.</creator><creatorcontrib>McGivern, Jered V. ; Patitucci, Teresa N. ; Nord, Joshua A. ; Barabas, Marie-Elizabeth A. ; Stucky, Cheryl L. ; Ebert, Allison D.</creatorcontrib><description>Spinal muscular atrophy (SMA) is a genetic disorder caused by the deletion of the survival motor neuron 1 (SMN1) gene that leads to loss of motor neurons in the spinal cord. Although motor neurons are selectively lost during SMA pathology, selective replacement of SMN in motor neurons does not lead to full rescue in mouse models. Due to the ubiquitous expression of SMN, it is likely that other cell types besides motor neurons are affected by its disruption and therefore may contribute to disease pathology. Here we show that astrocytes in SMAΔ7 mouse spinal cord and from SMA‐induced pluripotent stem cells exhibit morphological and cellular changes indicative of activation before overt motor neuron loss. Furthermore, our in vitro studies show mis‐regulation of basal calcium and decreased response to adenosine triphosphate stimulation indicating abnormal astrocyte function. Together, for the first time, these data show early disruptions in astrocytes that may contribute to SMA disease pathology.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.22522</identifier><identifier>PMID: 23839956</identifier><identifier>CODEN: GLIAEJ</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Adenosine Triphosphate - pharmacology ; Age Factors ; Aldehyde Dehydrogenase - metabolism ; Amyotrophic lateral sclerosis ; Analysis of Variance ; Animals ; Animals, Newborn ; astrocyte activation ; Astrocytes - drug effects ; Astrocytes - metabolism ; ATP ; Calcium ; Calcium - metabolism ; cell autonomous ; Cell Line, Transformed ; Choline O-Acetyltransferase - metabolism ; Disease Models, Animal ; Gene Expression Regulation, Developmental - genetics ; Glial Cell Line-Derived Neurotrophic Factor - metabolism ; Glial Fibrillary Acidic Protein - metabolism ; Humans ; Mice ; Mice, Transgenic ; motor neurons ; Muscular Atrophy, Spinal - genetics ; Muscular Atrophy, Spinal - pathology ; Mutation - genetics ; Nestin - metabolism ; Neurons ; Pathology ; Pluripotent Stem Cells - metabolism ; Receptors, Purinergic P2Y2 - metabolism ; Rodents ; S100 Proteins - metabolism ; Spinal cord ; Spinal Cord - cytology ; stem cells ; Survival of Motor Neuron 1 Protein - genetics ; Survival of Motor Neuron 2 Protein - metabolism</subject><ispartof>Glia, 2013-09, Vol.61 (9), p.1418-1428</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5852-e61a4f8e225f2ea524120e0736b76db74b8361a40650b14ea8d5612878d549ac3</citedby><cites>FETCH-LOGICAL-c5852-e61a4f8e225f2ea524120e0736b76db74b8361a40650b14ea8d5612878d549ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.22522$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.22522$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23839956$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McGivern, Jered V.</creatorcontrib><creatorcontrib>Patitucci, Teresa N.</creatorcontrib><creatorcontrib>Nord, Joshua A.</creatorcontrib><creatorcontrib>Barabas, Marie-Elizabeth A.</creatorcontrib><creatorcontrib>Stucky, Cheryl L.</creatorcontrib><creatorcontrib>Ebert, Allison D.</creatorcontrib><title>Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production</title><title>Glia</title><addtitle>Glia</addtitle><description>Spinal muscular atrophy (SMA) is a genetic disorder caused by the deletion of the survival motor neuron 1 (SMN1) gene that leads to loss of motor neurons in the spinal cord. Although motor neurons are selectively lost during SMA pathology, selective replacement of SMN in motor neurons does not lead to full rescue in mouse models. Due to the ubiquitous expression of SMN, it is likely that other cell types besides motor neurons are affected by its disruption and therefore may contribute to disease pathology. Here we show that astrocytes in SMAΔ7 mouse spinal cord and from SMA‐induced pluripotent stem cells exhibit morphological and cellular changes indicative of activation before overt motor neuron loss. Furthermore, our in vitro studies show mis‐regulation of basal calcium and decreased response to adenosine triphosphate stimulation indicating abnormal astrocyte function. Together, for the first time, these data show early disruptions in astrocytes that may contribute to SMA disease pathology.</description><subject>Adenosine Triphosphate - pharmacology</subject><subject>Age Factors</subject><subject>Aldehyde Dehydrogenase - metabolism</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>astrocyte activation</subject><subject>Astrocytes - drug effects</subject><subject>Astrocytes - metabolism</subject><subject>ATP</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>cell autonomous</subject><subject>Cell Line, Transformed</subject><subject>Choline O-Acetyltransferase - metabolism</subject><subject>Disease Models, Animal</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Glial Cell Line-Derived Neurotrophic Factor - metabolism</subject><subject>Glial Fibrillary Acidic Protein - metabolism</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>motor neurons</subject><subject>Muscular Atrophy, Spinal - genetics</subject><subject>Muscular Atrophy, Spinal - pathology</subject><subject>Mutation - genetics</subject><subject>Nestin - metabolism</subject><subject>Neurons</subject><subject>Pathology</subject><subject>Pluripotent Stem Cells - metabolism</subject><subject>Receptors, Purinergic P2Y2 - metabolism</subject><subject>Rodents</subject><subject>S100 Proteins - metabolism</subject><subject>Spinal cord</subject><subject>Spinal Cord - cytology</subject><subject>stem cells</subject><subject>Survival of Motor Neuron 1 Protein - genetics</subject><subject>Survival of Motor Neuron 2 Protein - metabolism</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9v1DAQxS0EokvhwgdAlrggpBT_jZMLUlXBttIKDgX1aE0cZ9etEwc7od1vj7fbroAD4jQe-_eeZvwQek3JCSWEfVh7ByeMScaeoAUldVVQysunaEGqWhRU1PQIvUjpmhCaG_UcHTFe8bqW5QLdXI5uAI_7OZnZQ8QwxTButhhSPpjtZBO2dxvXuAlDM4TYZ9iAN27ucbTrrJlcGDAMbW7b2dgWr2O4nTa4AzOFiMcY8vUOeomedeCTffVQj9H3z5--nZ0Xq6_Li7PTVWFkJVlhSwqiq2zeqGMWJBOUEUsULxtVto0STcV3CCklaaiwULWypKxSuYoaDD9GH_e-49z0tjV2mCJ4PUbXQ9zqAE7_-TK4jV6Hn5rXghIlssG7B4MYfsw2Tbp3yVjvYbBhTpoKLgjLaP0fKJUl4UTJjL79C70Oc8yff08xIVS2zNT7PWViSCna7jA3JXoXt97Fre_jzvCb3zc9oI_5ZoDugVvn7fYfVnq5ujh9NC32Gpcme3fQQLzRpeJK6qsvS315fsWkqKgm_BcqAsVe</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>McGivern, Jered V.</creator><creator>Patitucci, Teresa N.</creator><creator>Nord, Joshua A.</creator><creator>Barabas, Marie-Elizabeth A.</creator><creator>Stucky, Cheryl L.</creator><creator>Ebert, Allison D.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>7QP</scope><scope>5PM</scope></search><sort><creationdate>201309</creationdate><title>Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production</title><author>McGivern, Jered V. ; Patitucci, Teresa N. ; Nord, Joshua A. ; Barabas, Marie-Elizabeth A. ; Stucky, Cheryl L. ; Ebert, Allison D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5852-e61a4f8e225f2ea524120e0736b76db74b8361a40650b14ea8d5612878d549ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine Triphosphate - pharmacology</topic><topic>Age Factors</topic><topic>Aldehyde Dehydrogenase - metabolism</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>astrocyte activation</topic><topic>Astrocytes - drug effects</topic><topic>Astrocytes - metabolism</topic><topic>ATP</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>cell autonomous</topic><topic>Cell Line, Transformed</topic><topic>Choline O-Acetyltransferase - metabolism</topic><topic>Disease Models, Animal</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Glial Cell Line-Derived Neurotrophic Factor - metabolism</topic><topic>Glial Fibrillary Acidic Protein - metabolism</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>motor neurons</topic><topic>Muscular Atrophy, Spinal - genetics</topic><topic>Muscular Atrophy, Spinal - pathology</topic><topic>Mutation - genetics</topic><topic>Nestin - metabolism</topic><topic>Neurons</topic><topic>Pathology</topic><topic>Pluripotent Stem Cells - metabolism</topic><topic>Receptors, Purinergic P2Y2 - metabolism</topic><topic>Rodents</topic><topic>S100 Proteins - metabolism</topic><topic>Spinal cord</topic><topic>Spinal Cord - cytology</topic><topic>stem cells</topic><topic>Survival of Motor Neuron 1 Protein - genetics</topic><topic>Survival of Motor Neuron 2 Protein - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGivern, Jered V.</creatorcontrib><creatorcontrib>Patitucci, Teresa N.</creatorcontrib><creatorcontrib>Nord, Joshua A.</creatorcontrib><creatorcontrib>Barabas, Marie-Elizabeth A.</creatorcontrib><creatorcontrib>Stucky, Cheryl L.</creatorcontrib><creatorcontrib>Ebert, Allison D.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGivern, Jered V.</au><au>Patitucci, Teresa N.</au><au>Nord, Joshua A.</au><au>Barabas, Marie-Elizabeth A.</au><au>Stucky, Cheryl L.</au><au>Ebert, Allison D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2013-09</date><risdate>2013</risdate><volume>61</volume><issue>9</issue><spage>1418</spage><epage>1428</epage><pages>1418-1428</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><coden>GLIAEJ</coden><abstract>Spinal muscular atrophy (SMA) is a genetic disorder caused by the deletion of the survival motor neuron 1 (SMN1) gene that leads to loss of motor neurons in the spinal cord. Although motor neurons are selectively lost during SMA pathology, selective replacement of SMN in motor neurons does not lead to full rescue in mouse models. Due to the ubiquitous expression of SMN, it is likely that other cell types besides motor neurons are affected by its disruption and therefore may contribute to disease pathology. Here we show that astrocytes in SMAΔ7 mouse spinal cord and from SMA‐induced pluripotent stem cells exhibit morphological and cellular changes indicative of activation before overt motor neuron loss. Furthermore, our in vitro studies show mis‐regulation of basal calcium and decreased response to adenosine triphosphate stimulation indicating abnormal astrocyte function. Together, for the first time, these data show early disruptions in astrocytes that may contribute to SMA disease pathology.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>23839956</pmid><doi>10.1002/glia.22522</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-1491
ispartof Glia, 2013-09, Vol.61 (9), p.1418-1428
issn 0894-1491
1098-1136
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3941074
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adenosine Triphosphate - pharmacology
Age Factors
Aldehyde Dehydrogenase - metabolism
Amyotrophic lateral sclerosis
Analysis of Variance
Animals
Animals, Newborn
astrocyte activation
Astrocytes - drug effects
Astrocytes - metabolism
ATP
Calcium
Calcium - metabolism
cell autonomous
Cell Line, Transformed
Choline O-Acetyltransferase - metabolism
Disease Models, Animal
Gene Expression Regulation, Developmental - genetics
Glial Cell Line-Derived Neurotrophic Factor - metabolism
Glial Fibrillary Acidic Protein - metabolism
Humans
Mice
Mice, Transgenic
motor neurons
Muscular Atrophy, Spinal - genetics
Muscular Atrophy, Spinal - pathology
Mutation - genetics
Nestin - metabolism
Neurons
Pathology
Pluripotent Stem Cells - metabolism
Receptors, Purinergic P2Y2 - metabolism
Rodents
S100 Proteins - metabolism
Spinal cord
Spinal Cord - cytology
stem cells
Survival of Motor Neuron 1 Protein - genetics
Survival of Motor Neuron 2 Protein - metabolism
title Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A56%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spinal%20muscular%20atrophy%20astrocytes%20exhibit%20abnormal%20calcium%20regulation%20and%20reduced%20growth%20factor%20production&rft.jtitle=Glia&rft.au=McGivern,%20Jered%20V.&rft.date=2013-09&rft.volume=61&rft.issue=9&rft.spage=1418&rft.epage=1428&rft.pages=1418-1428&rft.issn=0894-1491&rft.eissn=1098-1136&rft.coden=GLIAEJ&rft_id=info:doi/10.1002/glia.22522&rft_dat=%3Cproquest_pubme%3E3028560771%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1412447210&rft_id=info:pmid/23839956&rfr_iscdi=true