Elements in nucleotide sensing and hydrolysis of the AAA+ disaggregation machine ClpB: a structure-based mechanistic dissection of a molecular motor

ATPases of the AAA+ superfamily are large oligomeric molecular machines that remodel their substrates by converting the energy from ATP hydrolysis into mechanical force. This study focuses on the molecular chaperone ClpB, the bacterial homologue of Hsp104, which reactivates aggregated proteins under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section D, Biological crystallography. Biological crystallography., 2014-02, Vol.70 (2), p.582-595
Hauptverfasser: Zeymer, Cathleen, Barends, Thomas R. M., Werbeck, Nicolas D., Schlichting, Ilme, Reinstein, Jochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 595
container_issue 2
container_start_page 582
container_title Acta crystallographica. Section D, Biological crystallography.
container_volume 70
creator Zeymer, Cathleen
Barends, Thomas R. M.
Werbeck, Nicolas D.
Schlichting, Ilme
Reinstein, Jochen
description ATPases of the AAA+ superfamily are large oligomeric molecular machines that remodel their substrates by converting the energy from ATP hydrolysis into mechanical force. This study focuses on the molecular chaperone ClpB, the bacterial homologue of Hsp104, which reactivates aggregated proteins under cellular stress conditions. Based on high‐resolution crystal structures in different nucleotide states, mutational analysis and nucleotide‐binding kinetics experiments, the ATPase cycle of the C‐terminal nucleotide‐binding domain (NBD2), one of the motor subunits of this AAA+ disaggregation machine, is dissected mechanistically. The results provide insights into nucleotide sensing, explaining how the conserved sensor 2 motif contributes to the discrimination between ADP and ATP binding. Furthermore, the role of a conserved active‐site arginine (Arg621), which controls binding of the essential Mg2+ ion, is described. Finally, a hypothesis is presented as to how the ATPase activity is regulated by a conformational switch that involves the essential Walker A lysine. In the proposed model, an unusual side‐chain conformation of this highly conserved residue stabilizes a catalytically inactive state, thereby avoiding unnecessary ATP hydrolysis.
doi_str_mv 10.1107/S1399004713030629
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3940203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1500703160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4582-be0ad57446b7ddca2834648d43b7f6ef9ed9f07e46bf84256181de2bfedfe73b3</originalsourceid><addsrcrecordid>eNqFUk1v1DAQjRCIfsAP4IIscUFCAX8lTjhUWralIKpyoKhwshx7suvi2IudFPZ_8IPxsmUp4sDJo5n33vjNTFE8Ivg5IVi8-EBY22LMBWGY4Zq2d4r9Tarc5O7eiveKg5SuMMaUMnG_2KO8YoS3dL_4ceJgAD8mZD3yk3YQRmsAJfDJ-gVS3qDl2sTg1skmFHo0LgHNZrNnyNikFosICzXa4NGg9NJ6QHO3evUSKZTGOOlxilB2KoFBA-il8jaNVm-oCfQvWlZUaAgO9ORUzNEY4oPiXq9cgoc372Hx8fXJxfxNefb-9O18dlZqXjW07AArUwnO604YoxVtGK95YzjrRF9D34Jpeywg1_uG06omDTFAux5MD4J17LA42uqupm4Ao_MconJyFe2g4loGZeXfFW-XchGuJWs5pphlgSdbgZBtyaTtmE3q4H02J_OsuWiIyKinN21i-DpBGuVgkwbnlIcwJUkqjAVmpMZ_BHfQqzBFn4cg874azilrqowiW5SOIaUI_e7LBMvNZch_LiNzHt_2umP8PoUMaLeAb9bB-v-Kcvb5mL67rHCz4ZZbbl4vfN9xVfwia8FEJS_PT2VzMcfnmH2Sx-wnAbvVZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1498442385</pqid></control><display><type>article</type><title>Elements in nucleotide sensing and hydrolysis of the AAA+ disaggregation machine ClpB: a structure-based mechanistic dissection of a molecular motor</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Zeymer, Cathleen ; Barends, Thomas R. M. ; Werbeck, Nicolas D. ; Schlichting, Ilme ; Reinstein, Jochen</creator><creatorcontrib>Zeymer, Cathleen ; Barends, Thomas R. M. ; Werbeck, Nicolas D. ; Schlichting, Ilme ; Reinstein, Jochen</creatorcontrib><description>ATPases of the AAA+ superfamily are large oligomeric molecular machines that remodel their substrates by converting the energy from ATP hydrolysis into mechanical force. This study focuses on the molecular chaperone ClpB, the bacterial homologue of Hsp104, which reactivates aggregated proteins under cellular stress conditions. Based on high‐resolution crystal structures in different nucleotide states, mutational analysis and nucleotide‐binding kinetics experiments, the ATPase cycle of the C‐terminal nucleotide‐binding domain (NBD2), one of the motor subunits of this AAA+ disaggregation machine, is dissected mechanistically. The results provide insights into nucleotide sensing, explaining how the conserved sensor 2 motif contributes to the discrimination between ADP and ATP binding. Furthermore, the role of a conserved active‐site arginine (Arg621), which controls binding of the essential Mg2+ ion, is described. Finally, a hypothesis is presented as to how the ATPase activity is regulated by a conformational switch that involves the essential Walker A lysine. In the proposed model, an unusual side‐chain conformation of this highly conserved residue stabilizes a catalytically inactive state, thereby avoiding unnecessary ATP hydrolysis.</description><identifier>ISSN: 1399-0047</identifier><identifier>ISSN: 0907-4449</identifier><identifier>EISSN: 1399-0047</identifier><identifier>DOI: 10.1107/S1399004713030629</identifier><identifier>PMID: 24531492</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>AAA+ protein ; Adenosine Diphosphate - chemistry ; Adenosine Diphosphate - metabolism ; Adenosine triphosphatase ; Adenosine Triphosphate - chemistry ; Adenosine Triphosphate - metabolism ; Amino Acid Motifs ; ARGININE ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Cations, Divalent ; ClpB ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CRYSTAL STRUCTURE ; Crystallography, X-Ray ; CRYSTALS ; enzyme mechanisms ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Hydrolysis ; IONS ; KINETICS ; LYSINE ; Magnesium - chemistry ; Magnesium - metabolism ; Models, Molecular ; molecular chaperones ; Molecular Motor Proteins - chemistry ; Molecular Motor Proteins - genetics ; Molecular Motor Proteins - metabolism ; molecular motors ; Molecular Sequence Data ; Mutation ; nucleotide sensing ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits - chemistry ; Protein Subunits - genetics ; Protein Subunits - metabolism ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Research Papers ; RESOLUTION ; SENSORS ; Signal Transduction ; STRESSES ; Substrate Specificity ; SUBSTRATES ; SWITCHES ; Thermus thermophilus - chemistry ; Thermus thermophilus - enzymology ; transient kinetics ; TRANSIENTS</subject><ispartof>Acta crystallographica. Section D, Biological crystallography., 2014-02, Vol.70 (2), p.582-595</ispartof><rights>Zeymer et al. 2014</rights><rights>Zeymer et al. 2014</rights><rights>Zeymer et al. 2014 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4582-be0ad57446b7ddca2834648d43b7f6ef9ed9f07e46bf84256181de2bfedfe73b3</citedby><cites>FETCH-LOGICAL-c4582-be0ad57446b7ddca2834648d43b7f6ef9ed9f07e46bf84256181de2bfedfe73b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS1399004713030629$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS1399004713030629$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24531492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22347817$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeymer, Cathleen</creatorcontrib><creatorcontrib>Barends, Thomas R. M.</creatorcontrib><creatorcontrib>Werbeck, Nicolas D.</creatorcontrib><creatorcontrib>Schlichting, Ilme</creatorcontrib><creatorcontrib>Reinstein, Jochen</creatorcontrib><title>Elements in nucleotide sensing and hydrolysis of the AAA+ disaggregation machine ClpB: a structure-based mechanistic dissection of a molecular motor</title><title>Acta crystallographica. Section D, Biological crystallography.</title><addtitle>Acta Crystallographica D</addtitle><description>ATPases of the AAA+ superfamily are large oligomeric molecular machines that remodel their substrates by converting the energy from ATP hydrolysis into mechanical force. This study focuses on the molecular chaperone ClpB, the bacterial homologue of Hsp104, which reactivates aggregated proteins under cellular stress conditions. Based on high‐resolution crystal structures in different nucleotide states, mutational analysis and nucleotide‐binding kinetics experiments, the ATPase cycle of the C‐terminal nucleotide‐binding domain (NBD2), one of the motor subunits of this AAA+ disaggregation machine, is dissected mechanistically. The results provide insights into nucleotide sensing, explaining how the conserved sensor 2 motif contributes to the discrimination between ADP and ATP binding. Furthermore, the role of a conserved active‐site arginine (Arg621), which controls binding of the essential Mg2+ ion, is described. Finally, a hypothesis is presented as to how the ATPase activity is regulated by a conformational switch that involves the essential Walker A lysine. In the proposed model, an unusual side‐chain conformation of this highly conserved residue stabilizes a catalytically inactive state, thereby avoiding unnecessary ATP hydrolysis.</description><subject>AAA+ protein</subject><subject>Adenosine Diphosphate - chemistry</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Amino Acid Motifs</subject><subject>ARGININE</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Cations, Divalent</subject><subject>ClpB</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystallography, X-Ray</subject><subject>CRYSTALS</subject><subject>enzyme mechanisms</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Hydrolysis</subject><subject>IONS</subject><subject>KINETICS</subject><subject>LYSINE</subject><subject>Magnesium - chemistry</subject><subject>Magnesium - metabolism</subject><subject>Models, Molecular</subject><subject>molecular chaperones</subject><subject>Molecular Motor Proteins - chemistry</subject><subject>Molecular Motor Proteins - genetics</subject><subject>Molecular Motor Proteins - metabolism</subject><subject>molecular motors</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>nucleotide sensing</subject><subject>Protein Binding</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - metabolism</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Research Papers</subject><subject>RESOLUTION</subject><subject>SENSORS</subject><subject>Signal Transduction</subject><subject>STRESSES</subject><subject>Substrate Specificity</subject><subject>SUBSTRATES</subject><subject>SWITCHES</subject><subject>Thermus thermophilus - chemistry</subject><subject>Thermus thermophilus - enzymology</subject><subject>transient kinetics</subject><subject>TRANSIENTS</subject><issn>1399-0047</issn><issn>0907-4449</issn><issn>1399-0047</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUk1v1DAQjRCIfsAP4IIscUFCAX8lTjhUWralIKpyoKhwshx7suvi2IudFPZ_8IPxsmUp4sDJo5n33vjNTFE8Ivg5IVi8-EBY22LMBWGY4Zq2d4r9Tarc5O7eiveKg5SuMMaUMnG_2KO8YoS3dL_4ceJgAD8mZD3yk3YQRmsAJfDJ-gVS3qDl2sTg1skmFHo0LgHNZrNnyNikFosICzXa4NGg9NJ6QHO3evUSKZTGOOlxilB2KoFBA-il8jaNVm-oCfQvWlZUaAgO9ORUzNEY4oPiXq9cgoc372Hx8fXJxfxNefb-9O18dlZqXjW07AArUwnO604YoxVtGK95YzjrRF9D34Jpeywg1_uG06omDTFAux5MD4J17LA42uqupm4Ao_MconJyFe2g4loGZeXfFW-XchGuJWs5pphlgSdbgZBtyaTtmE3q4H02J_OsuWiIyKinN21i-DpBGuVgkwbnlIcwJUkqjAVmpMZ_BHfQqzBFn4cg874azilrqowiW5SOIaUI_e7LBMvNZch_LiNzHt_2umP8PoUMaLeAb9bB-v-Kcvb5mL67rHCz4ZZbbl4vfN9xVfwia8FEJS_PT2VzMcfnmH2Sx-wnAbvVZw</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Zeymer, Cathleen</creator><creator>Barends, Thomas R. M.</creator><creator>Werbeck, Nicolas D.</creator><creator>Schlichting, Ilme</creator><creator>Reinstein, Jochen</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SP</scope><scope>7SR</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>201402</creationdate><title>Elements in nucleotide sensing and hydrolysis of the AAA+ disaggregation machine ClpB: a structure-based mechanistic dissection of a molecular motor</title><author>Zeymer, Cathleen ; Barends, Thomas R. M. ; Werbeck, Nicolas D. ; Schlichting, Ilme ; Reinstein, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4582-be0ad57446b7ddca2834648d43b7f6ef9ed9f07e46bf84256181de2bfedfe73b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>AAA+ protein</topic><topic>Adenosine Diphosphate - chemistry</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Amino Acid Motifs</topic><topic>ARGININE</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Cations, Divalent</topic><topic>ClpB</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystallography, X-Ray</topic><topic>CRYSTALS</topic><topic>enzyme mechanisms</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Hydrolysis</topic><topic>IONS</topic><topic>KINETICS</topic><topic>LYSINE</topic><topic>Magnesium - chemistry</topic><topic>Magnesium - metabolism</topic><topic>Models, Molecular</topic><topic>molecular chaperones</topic><topic>Molecular Motor Proteins - chemistry</topic><topic>Molecular Motor Proteins - genetics</topic><topic>Molecular Motor Proteins - metabolism</topic><topic>molecular motors</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>nucleotide sensing</topic><topic>Protein Binding</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - metabolism</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Research Papers</topic><topic>RESOLUTION</topic><topic>SENSORS</topic><topic>Signal Transduction</topic><topic>STRESSES</topic><topic>Substrate Specificity</topic><topic>SUBSTRATES</topic><topic>SWITCHES</topic><topic>Thermus thermophilus - chemistry</topic><topic>Thermus thermophilus - enzymology</topic><topic>transient kinetics</topic><topic>TRANSIENTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeymer, Cathleen</creatorcontrib><creatorcontrib>Barends, Thomas R. M.</creatorcontrib><creatorcontrib>Werbeck, Nicolas D.</creatorcontrib><creatorcontrib>Schlichting, Ilme</creatorcontrib><creatorcontrib>Reinstein, Jochen</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeymer, Cathleen</au><au>Barends, Thomas R. M.</au><au>Werbeck, Nicolas D.</au><au>Schlichting, Ilme</au><au>Reinstein, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elements in nucleotide sensing and hydrolysis of the AAA+ disaggregation machine ClpB: a structure-based mechanistic dissection of a molecular motor</atitle><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle><addtitle>Acta Crystallographica D</addtitle><date>2014-02</date><risdate>2014</risdate><volume>70</volume><issue>2</issue><spage>582</spage><epage>595</epage><pages>582-595</pages><issn>1399-0047</issn><issn>0907-4449</issn><eissn>1399-0047</eissn><abstract>ATPases of the AAA+ superfamily are large oligomeric molecular machines that remodel their substrates by converting the energy from ATP hydrolysis into mechanical force. This study focuses on the molecular chaperone ClpB, the bacterial homologue of Hsp104, which reactivates aggregated proteins under cellular stress conditions. Based on high‐resolution crystal structures in different nucleotide states, mutational analysis and nucleotide‐binding kinetics experiments, the ATPase cycle of the C‐terminal nucleotide‐binding domain (NBD2), one of the motor subunits of this AAA+ disaggregation machine, is dissected mechanistically. The results provide insights into nucleotide sensing, explaining how the conserved sensor 2 motif contributes to the discrimination between ADP and ATP binding. Furthermore, the role of a conserved active‐site arginine (Arg621), which controls binding of the essential Mg2+ ion, is described. Finally, a hypothesis is presented as to how the ATPase activity is regulated by a conformational switch that involves the essential Walker A lysine. In the proposed model, an unusual side‐chain conformation of this highly conserved residue stabilizes a catalytically inactive state, thereby avoiding unnecessary ATP hydrolysis.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>24531492</pmid><doi>10.1107/S1399004713030629</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1399-0047
ispartof Acta crystallographica. Section D, Biological crystallography., 2014-02, Vol.70 (2), p.582-595
issn 1399-0047
0907-4449
1399-0047
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3940203
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects AAA+ protein
Adenosine Diphosphate - chemistry
Adenosine Diphosphate - metabolism
Adenosine triphosphatase
Adenosine Triphosphate - chemistry
Adenosine Triphosphate - metabolism
Amino Acid Motifs
ARGININE
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Cations, Divalent
ClpB
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
CRYSTAL STRUCTURE
Crystallography, X-Ray
CRYSTALS
enzyme mechanisms
Escherichia coli - genetics
Escherichia coli - metabolism
Hydrolysis
IONS
KINETICS
LYSINE
Magnesium - chemistry
Magnesium - metabolism
Models, Molecular
molecular chaperones
Molecular Motor Proteins - chemistry
Molecular Motor Proteins - genetics
Molecular Motor Proteins - metabolism
molecular motors
Molecular Sequence Data
Mutation
nucleotide sensing
Protein Binding
Protein Structure, Secondary
Protein Structure, Tertiary
Protein Subunits - chemistry
Protein Subunits - genetics
Protein Subunits - metabolism
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Research Papers
RESOLUTION
SENSORS
Signal Transduction
STRESSES
Substrate Specificity
SUBSTRATES
SWITCHES
Thermus thermophilus - chemistry
Thermus thermophilus - enzymology
transient kinetics
TRANSIENTS
title Elements in nucleotide sensing and hydrolysis of the AAA+ disaggregation machine ClpB: a structure-based mechanistic dissection of a molecular motor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A41%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elements%20in%20nucleotide%20sensing%20and%20hydrolysis%20of%20the%20AAA+%20disaggregation%20machine%20ClpB:%20a%20structure-based%20mechanistic%20dissection%20of%20a%20molecular%20motor&rft.jtitle=Acta%20crystallographica.%20Section%20D,%20Biological%20crystallography.&rft.au=Zeymer,%20Cathleen&rft.date=2014-02&rft.volume=70&rft.issue=2&rft.spage=582&rft.epage=595&rft.pages=582-595&rft.issn=1399-0047&rft.eissn=1399-0047&rft_id=info:doi/10.1107/S1399004713030629&rft_dat=%3Cproquest_pubme%3E1500703160%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1498442385&rft_id=info:pmid/24531492&rfr_iscdi=true