Elements in nucleotide sensing and hydrolysis of the AAA+ disaggregation machine ClpB: a structure-based mechanistic dissection of a molecular motor
ATPases of the AAA+ superfamily are large oligomeric molecular machines that remodel their substrates by converting the energy from ATP hydrolysis into mechanical force. This study focuses on the molecular chaperone ClpB, the bacterial homologue of Hsp104, which reactivates aggregated proteins under...
Gespeichert in:
Veröffentlicht in: | Acta crystallographica. Section D, Biological crystallography. Biological crystallography., 2014-02, Vol.70 (2), p.582-595 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 595 |
---|---|
container_issue | 2 |
container_start_page | 582 |
container_title | Acta crystallographica. Section D, Biological crystallography. |
container_volume | 70 |
creator | Zeymer, Cathleen Barends, Thomas R. M. Werbeck, Nicolas D. Schlichting, Ilme Reinstein, Jochen |
description | ATPases of the AAA+ superfamily are large oligomeric molecular machines that remodel their substrates by converting the energy from ATP hydrolysis into mechanical force. This study focuses on the molecular chaperone ClpB, the bacterial homologue of Hsp104, which reactivates aggregated proteins under cellular stress conditions. Based on high‐resolution crystal structures in different nucleotide states, mutational analysis and nucleotide‐binding kinetics experiments, the ATPase cycle of the C‐terminal nucleotide‐binding domain (NBD2), one of the motor subunits of this AAA+ disaggregation machine, is dissected mechanistically. The results provide insights into nucleotide sensing, explaining how the conserved sensor 2 motif contributes to the discrimination between ADP and ATP binding. Furthermore, the role of a conserved active‐site arginine (Arg621), which controls binding of the essential Mg2+ ion, is described. Finally, a hypothesis is presented as to how the ATPase activity is regulated by a conformational switch that involves the essential Walker A lysine. In the proposed model, an unusual side‐chain conformation of this highly conserved residue stabilizes a catalytically inactive state, thereby avoiding unnecessary ATP hydrolysis. |
doi_str_mv | 10.1107/S1399004713030629 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3940203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1500703160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4582-be0ad57446b7ddca2834648d43b7f6ef9ed9f07e46bf84256181de2bfedfe73b3</originalsourceid><addsrcrecordid>eNqFUk1v1DAQjRCIfsAP4IIscUFCAX8lTjhUWralIKpyoKhwshx7suvi2IudFPZ_8IPxsmUp4sDJo5n33vjNTFE8Ivg5IVi8-EBY22LMBWGY4Zq2d4r9Tarc5O7eiveKg5SuMMaUMnG_2KO8YoS3dL_4ceJgAD8mZD3yk3YQRmsAJfDJ-gVS3qDl2sTg1skmFHo0LgHNZrNnyNikFosICzXa4NGg9NJ6QHO3evUSKZTGOOlxilB2KoFBA-il8jaNVm-oCfQvWlZUaAgO9ORUzNEY4oPiXq9cgoc372Hx8fXJxfxNefb-9O18dlZqXjW07AArUwnO604YoxVtGK95YzjrRF9D34Jpeywg1_uG06omDTFAux5MD4J17LA42uqupm4Ao_MconJyFe2g4loGZeXfFW-XchGuJWs5pphlgSdbgZBtyaTtmE3q4H02J_OsuWiIyKinN21i-DpBGuVgkwbnlIcwJUkqjAVmpMZ_BHfQqzBFn4cg874azilrqowiW5SOIaUI_e7LBMvNZch_LiNzHt_2umP8PoUMaLeAb9bB-v-Kcvb5mL67rHCz4ZZbbl4vfN9xVfwia8FEJS_PT2VzMcfnmH2Sx-wnAbvVZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1498442385</pqid></control><display><type>article</type><title>Elements in nucleotide sensing and hydrolysis of the AAA+ disaggregation machine ClpB: a structure-based mechanistic dissection of a molecular motor</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Zeymer, Cathleen ; Barends, Thomas R. M. ; Werbeck, Nicolas D. ; Schlichting, Ilme ; Reinstein, Jochen</creator><creatorcontrib>Zeymer, Cathleen ; Barends, Thomas R. M. ; Werbeck, Nicolas D. ; Schlichting, Ilme ; Reinstein, Jochen</creatorcontrib><description>ATPases of the AAA+ superfamily are large oligomeric molecular machines that remodel their substrates by converting the energy from ATP hydrolysis into mechanical force. This study focuses on the molecular chaperone ClpB, the bacterial homologue of Hsp104, which reactivates aggregated proteins under cellular stress conditions. Based on high‐resolution crystal structures in different nucleotide states, mutational analysis and nucleotide‐binding kinetics experiments, the ATPase cycle of the C‐terminal nucleotide‐binding domain (NBD2), one of the motor subunits of this AAA+ disaggregation machine, is dissected mechanistically. The results provide insights into nucleotide sensing, explaining how the conserved sensor 2 motif contributes to the discrimination between ADP and ATP binding. Furthermore, the role of a conserved active‐site arginine (Arg621), which controls binding of the essential Mg2+ ion, is described. Finally, a hypothesis is presented as to how the ATPase activity is regulated by a conformational switch that involves the essential Walker A lysine. In the proposed model, an unusual side‐chain conformation of this highly conserved residue stabilizes a catalytically inactive state, thereby avoiding unnecessary ATP hydrolysis.</description><identifier>ISSN: 1399-0047</identifier><identifier>ISSN: 0907-4449</identifier><identifier>EISSN: 1399-0047</identifier><identifier>DOI: 10.1107/S1399004713030629</identifier><identifier>PMID: 24531492</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>AAA+ protein ; Adenosine Diphosphate - chemistry ; Adenosine Diphosphate - metabolism ; Adenosine triphosphatase ; Adenosine Triphosphate - chemistry ; Adenosine Triphosphate - metabolism ; Amino Acid Motifs ; ARGININE ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Cations, Divalent ; ClpB ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CRYSTAL STRUCTURE ; Crystallography, X-Ray ; CRYSTALS ; enzyme mechanisms ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Hydrolysis ; IONS ; KINETICS ; LYSINE ; Magnesium - chemistry ; Magnesium - metabolism ; Models, Molecular ; molecular chaperones ; Molecular Motor Proteins - chemistry ; Molecular Motor Proteins - genetics ; Molecular Motor Proteins - metabolism ; molecular motors ; Molecular Sequence Data ; Mutation ; nucleotide sensing ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits - chemistry ; Protein Subunits - genetics ; Protein Subunits - metabolism ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Research Papers ; RESOLUTION ; SENSORS ; Signal Transduction ; STRESSES ; Substrate Specificity ; SUBSTRATES ; SWITCHES ; Thermus thermophilus - chemistry ; Thermus thermophilus - enzymology ; transient kinetics ; TRANSIENTS</subject><ispartof>Acta crystallographica. Section D, Biological crystallography., 2014-02, Vol.70 (2), p.582-595</ispartof><rights>Zeymer et al. 2014</rights><rights>Zeymer et al. 2014</rights><rights>Zeymer et al. 2014 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4582-be0ad57446b7ddca2834648d43b7f6ef9ed9f07e46bf84256181de2bfedfe73b3</citedby><cites>FETCH-LOGICAL-c4582-be0ad57446b7ddca2834648d43b7f6ef9ed9f07e46bf84256181de2bfedfe73b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS1399004713030629$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS1399004713030629$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24531492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22347817$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeymer, Cathleen</creatorcontrib><creatorcontrib>Barends, Thomas R. M.</creatorcontrib><creatorcontrib>Werbeck, Nicolas D.</creatorcontrib><creatorcontrib>Schlichting, Ilme</creatorcontrib><creatorcontrib>Reinstein, Jochen</creatorcontrib><title>Elements in nucleotide sensing and hydrolysis of the AAA+ disaggregation machine ClpB: a structure-based mechanistic dissection of a molecular motor</title><title>Acta crystallographica. Section D, Biological crystallography.</title><addtitle>Acta Crystallographica D</addtitle><description>ATPases of the AAA+ superfamily are large oligomeric molecular machines that remodel their substrates by converting the energy from ATP hydrolysis into mechanical force. This study focuses on the molecular chaperone ClpB, the bacterial homologue of Hsp104, which reactivates aggregated proteins under cellular stress conditions. Based on high‐resolution crystal structures in different nucleotide states, mutational analysis and nucleotide‐binding kinetics experiments, the ATPase cycle of the C‐terminal nucleotide‐binding domain (NBD2), one of the motor subunits of this AAA+ disaggregation machine, is dissected mechanistically. The results provide insights into nucleotide sensing, explaining how the conserved sensor 2 motif contributes to the discrimination between ADP and ATP binding. Furthermore, the role of a conserved active‐site arginine (Arg621), which controls binding of the essential Mg2+ ion, is described. Finally, a hypothesis is presented as to how the ATPase activity is regulated by a conformational switch that involves the essential Walker A lysine. In the proposed model, an unusual side‐chain conformation of this highly conserved residue stabilizes a catalytically inactive state, thereby avoiding unnecessary ATP hydrolysis.</description><subject>AAA+ protein</subject><subject>Adenosine Diphosphate - chemistry</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Amino Acid Motifs</subject><subject>ARGININE</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Cations, Divalent</subject><subject>ClpB</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystallography, X-Ray</subject><subject>CRYSTALS</subject><subject>enzyme mechanisms</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Hydrolysis</subject><subject>IONS</subject><subject>KINETICS</subject><subject>LYSINE</subject><subject>Magnesium - chemistry</subject><subject>Magnesium - metabolism</subject><subject>Models, Molecular</subject><subject>molecular chaperones</subject><subject>Molecular Motor Proteins - chemistry</subject><subject>Molecular Motor Proteins - genetics</subject><subject>Molecular Motor Proteins - metabolism</subject><subject>molecular motors</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>nucleotide sensing</subject><subject>Protein Binding</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - metabolism</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Research Papers</subject><subject>RESOLUTION</subject><subject>SENSORS</subject><subject>Signal Transduction</subject><subject>STRESSES</subject><subject>Substrate Specificity</subject><subject>SUBSTRATES</subject><subject>SWITCHES</subject><subject>Thermus thermophilus - chemistry</subject><subject>Thermus thermophilus - enzymology</subject><subject>transient kinetics</subject><subject>TRANSIENTS</subject><issn>1399-0047</issn><issn>0907-4449</issn><issn>1399-0047</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUk1v1DAQjRCIfsAP4IIscUFCAX8lTjhUWralIKpyoKhwshx7suvi2IudFPZ_8IPxsmUp4sDJo5n33vjNTFE8Ivg5IVi8-EBY22LMBWGY4Zq2d4r9Tarc5O7eiveKg5SuMMaUMnG_2KO8YoS3dL_4ceJgAD8mZD3yk3YQRmsAJfDJ-gVS3qDl2sTg1skmFHo0LgHNZrNnyNikFosICzXa4NGg9NJ6QHO3evUSKZTGOOlxilB2KoFBA-il8jaNVm-oCfQvWlZUaAgO9ORUzNEY4oPiXq9cgoc372Hx8fXJxfxNefb-9O18dlZqXjW07AArUwnO604YoxVtGK95YzjrRF9D34Jpeywg1_uG06omDTFAux5MD4J17LA42uqupm4Ao_MconJyFe2g4loGZeXfFW-XchGuJWs5pphlgSdbgZBtyaTtmE3q4H02J_OsuWiIyKinN21i-DpBGuVgkwbnlIcwJUkqjAVmpMZ_BHfQqzBFn4cg874azilrqowiW5SOIaUI_e7LBMvNZch_LiNzHt_2umP8PoUMaLeAb9bB-v-Kcvb5mL67rHCz4ZZbbl4vfN9xVfwia8FEJS_PT2VzMcfnmH2Sx-wnAbvVZw</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Zeymer, Cathleen</creator><creator>Barends, Thomas R. M.</creator><creator>Werbeck, Nicolas D.</creator><creator>Schlichting, Ilme</creator><creator>Reinstein, Jochen</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SP</scope><scope>7SR</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>201402</creationdate><title>Elements in nucleotide sensing and hydrolysis of the AAA+ disaggregation machine ClpB: a structure-based mechanistic dissection of a molecular motor</title><author>Zeymer, Cathleen ; Barends, Thomas R. M. ; Werbeck, Nicolas D. ; Schlichting, Ilme ; Reinstein, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4582-be0ad57446b7ddca2834648d43b7f6ef9ed9f07e46bf84256181de2bfedfe73b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>AAA+ protein</topic><topic>Adenosine Diphosphate - chemistry</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Amino Acid Motifs</topic><topic>ARGININE</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Cations, Divalent</topic><topic>ClpB</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystallography, X-Ray</topic><topic>CRYSTALS</topic><topic>enzyme mechanisms</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Hydrolysis</topic><topic>IONS</topic><topic>KINETICS</topic><topic>LYSINE</topic><topic>Magnesium - chemistry</topic><topic>Magnesium - metabolism</topic><topic>Models, Molecular</topic><topic>molecular chaperones</topic><topic>Molecular Motor Proteins - chemistry</topic><topic>Molecular Motor Proteins - genetics</topic><topic>Molecular Motor Proteins - metabolism</topic><topic>molecular motors</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>nucleotide sensing</topic><topic>Protein Binding</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - metabolism</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Research Papers</topic><topic>RESOLUTION</topic><topic>SENSORS</topic><topic>Signal Transduction</topic><topic>STRESSES</topic><topic>Substrate Specificity</topic><topic>SUBSTRATES</topic><topic>SWITCHES</topic><topic>Thermus thermophilus - chemistry</topic><topic>Thermus thermophilus - enzymology</topic><topic>transient kinetics</topic><topic>TRANSIENTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeymer, Cathleen</creatorcontrib><creatorcontrib>Barends, Thomas R. M.</creatorcontrib><creatorcontrib>Werbeck, Nicolas D.</creatorcontrib><creatorcontrib>Schlichting, Ilme</creatorcontrib><creatorcontrib>Reinstein, Jochen</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeymer, Cathleen</au><au>Barends, Thomas R. M.</au><au>Werbeck, Nicolas D.</au><au>Schlichting, Ilme</au><au>Reinstein, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elements in nucleotide sensing and hydrolysis of the AAA+ disaggregation machine ClpB: a structure-based mechanistic dissection of a molecular motor</atitle><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle><addtitle>Acta Crystallographica D</addtitle><date>2014-02</date><risdate>2014</risdate><volume>70</volume><issue>2</issue><spage>582</spage><epage>595</epage><pages>582-595</pages><issn>1399-0047</issn><issn>0907-4449</issn><eissn>1399-0047</eissn><abstract>ATPases of the AAA+ superfamily are large oligomeric molecular machines that remodel their substrates by converting the energy from ATP hydrolysis into mechanical force. This study focuses on the molecular chaperone ClpB, the bacterial homologue of Hsp104, which reactivates aggregated proteins under cellular stress conditions. Based on high‐resolution crystal structures in different nucleotide states, mutational analysis and nucleotide‐binding kinetics experiments, the ATPase cycle of the C‐terminal nucleotide‐binding domain (NBD2), one of the motor subunits of this AAA+ disaggregation machine, is dissected mechanistically. The results provide insights into nucleotide sensing, explaining how the conserved sensor 2 motif contributes to the discrimination between ADP and ATP binding. Furthermore, the role of a conserved active‐site arginine (Arg621), which controls binding of the essential Mg2+ ion, is described. Finally, a hypothesis is presented as to how the ATPase activity is regulated by a conformational switch that involves the essential Walker A lysine. In the proposed model, an unusual side‐chain conformation of this highly conserved residue stabilizes a catalytically inactive state, thereby avoiding unnecessary ATP hydrolysis.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>24531492</pmid><doi>10.1107/S1399004713030629</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1399-0047 |
ispartof | Acta crystallographica. Section D, Biological crystallography., 2014-02, Vol.70 (2), p.582-595 |
issn | 1399-0047 0907-4449 1399-0047 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3940203 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | AAA+ protein Adenosine Diphosphate - chemistry Adenosine Diphosphate - metabolism Adenosine triphosphatase Adenosine Triphosphate - chemistry Adenosine Triphosphate - metabolism Amino Acid Motifs ARGININE Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Cations, Divalent ClpB CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY CRYSTAL STRUCTURE Crystallography, X-Ray CRYSTALS enzyme mechanisms Escherichia coli - genetics Escherichia coli - metabolism Hydrolysis IONS KINETICS LYSINE Magnesium - chemistry Magnesium - metabolism Models, Molecular molecular chaperones Molecular Motor Proteins - chemistry Molecular Motor Proteins - genetics Molecular Motor Proteins - metabolism molecular motors Molecular Sequence Data Mutation nucleotide sensing Protein Binding Protein Structure, Secondary Protein Structure, Tertiary Protein Subunits - chemistry Protein Subunits - genetics Protein Subunits - metabolism Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Research Papers RESOLUTION SENSORS Signal Transduction STRESSES Substrate Specificity SUBSTRATES SWITCHES Thermus thermophilus - chemistry Thermus thermophilus - enzymology transient kinetics TRANSIENTS |
title | Elements in nucleotide sensing and hydrolysis of the AAA+ disaggregation machine ClpB: a structure-based mechanistic dissection of a molecular motor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A41%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elements%20in%20nucleotide%20sensing%20and%20hydrolysis%20of%20the%20AAA+%20disaggregation%20machine%20ClpB:%20a%20structure-based%20mechanistic%20dissection%20of%20a%20molecular%20motor&rft.jtitle=Acta%20crystallographica.%20Section%20D,%20Biological%20crystallography.&rft.au=Zeymer,%20Cathleen&rft.date=2014-02&rft.volume=70&rft.issue=2&rft.spage=582&rft.epage=595&rft.pages=582-595&rft.issn=1399-0047&rft.eissn=1399-0047&rft_id=info:doi/10.1107/S1399004713030629&rft_dat=%3Cproquest_pubme%3E1500703160%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1498442385&rft_id=info:pmid/24531492&rfr_iscdi=true |