Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells

Type IV secretion systems (T4SS) can mediate the translocation of bacterial virulence proteins into host cells. The plant pathogen Agrobacterium tumefaciens uses a T4SS to deliver a VirD2‐single stranded DNA complex as well as the virulence proteins VirD5, VirE2, VirE3, and VirF into host cells so t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MicrobiologyOpen (Weinheim) 2014-02, Vol.3 (1), p.104-117
Hauptverfasser: Sakalis, Philippe A., Heusden, G. Paul H., Hooykaas, Paul J. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue 1
container_start_page 104
container_title MicrobiologyOpen (Weinheim)
container_volume 3
creator Sakalis, Philippe A.
Heusden, G. Paul H.
Hooykaas, Paul J. J.
description Type IV secretion systems (T4SS) can mediate the translocation of bacterial virulence proteins into host cells. The plant pathogen Agrobacterium tumefaciens uses a T4SS to deliver a VirD2‐single stranded DNA complex as well as the virulence proteins VirD5, VirE2, VirE3, and VirF into host cells so that these become genetically transformed. Besides plant cells, yeast and fungi can efficiently be transformed by Agrobacterium. Translocation of virulence proteins by the T4SS has so far only been shown indirectly by genetic approaches. Here we report the direct visualization of VirE2 protein translocation by using bimolecular fluorescence complementation (BiFC) and Split GFP visualization strategies. To this end, we cocultivated Agrobacterium strains expressing VirE2 tagged with one part of a fluorescent protein with host cells expressing the complementary part, either fused to VirE2 (for BiFC) or not (Split GFP). Fluorescent filaments became visible in recipient cells 20–25 h after the start of the cocultivation indicative of VirE2 protein translocation. Evidence was obtained that filament formation was due to the association of VirE2 with the microtubuli. Here we report the direct visualization of VirE2 protein translocation from Agrobacterium into host cells. To this end, we cocultivated Agrobacterium strains expressing VirE2 tagged with one part of a fluorescent protein with host cells expressing the complementary part. Fluorescent filaments became visible in recipient cells 20–25 h after the start of the cocultivation indicative of VirE2 protein translocation.
doi_str_mv 10.1002/mbo3.152
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3937733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1499152270</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3712-2d9dccf02888930ea57e4b0ec1d8c05f0e2044b822b6e040f485dda5f68e16723</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVpaEKy0E9QdMzFqf7Zki-BbUjTQMpekr0KWR5nFWzLkeQW99PH290um1PnMgPvx2MeD6HPlFxRQtjXrvL8iubsAzpjROSZUkx-PLpP0SLGFzKPJKwQ9BM6ZYLLgnB5hl7WLo6mdX9Mcr7HvsFrF24ZHoJP4Hqcgulj6-1OriacNoCXz8FXxiYIbuxwmgbA92scwQb4i8UpJuiw65PHGx8TttC28QKdNKaNsNjvc_T0_fbx5kf2sLq7v1k-ZAOXlGWsLmtrG8KUUiUnYHIJoiJgaa0syRsCczJRKcaqAoggjVB5XZu8KRTQQjJ-jq53vsNYdVBb6OcQrR6C60yYtDdOv1d6t9HP_pfmJZeS89ngcm8Q_OsIMenOxW0E04Mfo6aSSlEypsj_UVGWczVMbtEvx28d_vnXxQxkO-C3a2E66JTobc16W7OevfTPbys-b_4GAZ2bPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499152270</pqid></control><display><type>article</type><title>Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Sakalis, Philippe A. ; Heusden, G. Paul H. ; Hooykaas, Paul J. J.</creator><creatorcontrib>Sakalis, Philippe A. ; Heusden, G. Paul H. ; Hooykaas, Paul J. J.</creatorcontrib><description>Type IV secretion systems (T4SS) can mediate the translocation of bacterial virulence proteins into host cells. The plant pathogen Agrobacterium tumefaciens uses a T4SS to deliver a VirD2‐single stranded DNA complex as well as the virulence proteins VirD5, VirE2, VirE3, and VirF into host cells so that these become genetically transformed. Besides plant cells, yeast and fungi can efficiently be transformed by Agrobacterium. Translocation of virulence proteins by the T4SS has so far only been shown indirectly by genetic approaches. Here we report the direct visualization of VirE2 protein translocation by using bimolecular fluorescence complementation (BiFC) and Split GFP visualization strategies. To this end, we cocultivated Agrobacterium strains expressing VirE2 tagged with one part of a fluorescent protein with host cells expressing the complementary part, either fused to VirE2 (for BiFC) or not (Split GFP). Fluorescent filaments became visible in recipient cells 20–25 h after the start of the cocultivation indicative of VirE2 protein translocation. Evidence was obtained that filament formation was due to the association of VirE2 with the microtubuli. Here we report the direct visualization of VirE2 protein translocation from Agrobacterium into host cells. To this end, we cocultivated Agrobacterium strains expressing VirE2 tagged with one part of a fluorescent protein with host cells expressing the complementary part. Fluorescent filaments became visible in recipient cells 20–25 h after the start of the cocultivation indicative of VirE2 protein translocation.</description><identifier>ISSN: 2045-8827</identifier><identifier>EISSN: 2045-8827</identifier><identifier>DOI: 10.1002/mbo3.152</identifier><identifier>PMID: 24376037</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons Ltd</publisher><subject>Agrobacterium tumefaciens ; Agrobacterium tumefaciens - physiology ; Agrobacterium tumefaciens - ultrastructure ; Arabidopsis - microbiology ; Arabidopsis - ultrastructure ; Bacterial Proteins - analysis ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacterial Proteins - ultrastructure ; Bacterial Secretion Systems - physiology ; BiFC ; Computer Systems ; DNA-Binding Proteins - metabolism ; DNA-Binding Proteins - ultrastructure ; Flow Cytometry ; Fluorescence Resonance Energy Transfer ; Fluorescent Dyes ; Green Fluorescent Proteins - analysis ; Green Fluorescent Proteins - genetics ; Ion Channels - metabolism ; Ion Channels - ultrastructure ; Luminescent Proteins - analysis ; Luminescent Proteins - genetics ; Microscopy, Confocal ; Microtubules - microbiology ; Microtubules - physiology ; Nicotiana - microbiology ; Nicotiana - ultrastructure ; Original Research ; Peptide Fragments - analysis ; Peptide Fragments - genetics ; Protein Binding ; Protein Interaction Mapping ; protein translocation ; Protein Transport ; Protoplasts ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - ultrastructure ; split GFP ; type 4 secretion system ; VirE2</subject><ispartof>MicrobiologyOpen (Weinheim), 2014-02, Vol.3 (1), p.104-117</ispartof><rights>2013 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2013 The Authors. MicrobiologyOpen published by John Wiley &amp; Sons Ltd.</rights><rights>2013 The Authors. published by John Wiley &amp; Sons Ltd. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937733/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937733/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24376037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sakalis, Philippe A.</creatorcontrib><creatorcontrib>Heusden, G. Paul H.</creatorcontrib><creatorcontrib>Hooykaas, Paul J. J.</creatorcontrib><title>Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells</title><title>MicrobiologyOpen (Weinheim)</title><addtitle>Microbiologyopen</addtitle><description>Type IV secretion systems (T4SS) can mediate the translocation of bacterial virulence proteins into host cells. The plant pathogen Agrobacterium tumefaciens uses a T4SS to deliver a VirD2‐single stranded DNA complex as well as the virulence proteins VirD5, VirE2, VirE3, and VirF into host cells so that these become genetically transformed. Besides plant cells, yeast and fungi can efficiently be transformed by Agrobacterium. Translocation of virulence proteins by the T4SS has so far only been shown indirectly by genetic approaches. Here we report the direct visualization of VirE2 protein translocation by using bimolecular fluorescence complementation (BiFC) and Split GFP visualization strategies. To this end, we cocultivated Agrobacterium strains expressing VirE2 tagged with one part of a fluorescent protein with host cells expressing the complementary part, either fused to VirE2 (for BiFC) or not (Split GFP). Fluorescent filaments became visible in recipient cells 20–25 h after the start of the cocultivation indicative of VirE2 protein translocation. Evidence was obtained that filament formation was due to the association of VirE2 with the microtubuli. Here we report the direct visualization of VirE2 protein translocation from Agrobacterium into host cells. To this end, we cocultivated Agrobacterium strains expressing VirE2 tagged with one part of a fluorescent protein with host cells expressing the complementary part. Fluorescent filaments became visible in recipient cells 20–25 h after the start of the cocultivation indicative of VirE2 protein translocation.</description><subject>Agrobacterium tumefaciens</subject><subject>Agrobacterium tumefaciens - physiology</subject><subject>Agrobacterium tumefaciens - ultrastructure</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis - ultrastructure</subject><subject>Bacterial Proteins - analysis</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Proteins - ultrastructure</subject><subject>Bacterial Secretion Systems - physiology</subject><subject>BiFC</subject><subject>Computer Systems</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DNA-Binding Proteins - ultrastructure</subject><subject>Flow Cytometry</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Fluorescent Dyes</subject><subject>Green Fluorescent Proteins - analysis</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Ion Channels - metabolism</subject><subject>Ion Channels - ultrastructure</subject><subject>Luminescent Proteins - analysis</subject><subject>Luminescent Proteins - genetics</subject><subject>Microscopy, Confocal</subject><subject>Microtubules - microbiology</subject><subject>Microtubules - physiology</subject><subject>Nicotiana - microbiology</subject><subject>Nicotiana - ultrastructure</subject><subject>Original Research</subject><subject>Peptide Fragments - analysis</subject><subject>Peptide Fragments - genetics</subject><subject>Protein Binding</subject><subject>Protein Interaction Mapping</subject><subject>protein translocation</subject><subject>Protein Transport</subject><subject>Protoplasts</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - ultrastructure</subject><subject>split GFP</subject><subject>type 4 secretion system</subject><subject>VirE2</subject><issn>2045-8827</issn><issn>2045-8827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU9r3DAQxUVpaEKy0E9QdMzFqf7Zki-BbUjTQMpekr0KWR5nFWzLkeQW99PH290um1PnMgPvx2MeD6HPlFxRQtjXrvL8iubsAzpjROSZUkx-PLpP0SLGFzKPJKwQ9BM6ZYLLgnB5hl7WLo6mdX9Mcr7HvsFrF24ZHoJP4Hqcgulj6-1OriacNoCXz8FXxiYIbuxwmgbA92scwQb4i8UpJuiw65PHGx8TttC28QKdNKaNsNjvc_T0_fbx5kf2sLq7v1k-ZAOXlGWsLmtrG8KUUiUnYHIJoiJgaa0syRsCczJRKcaqAoggjVB5XZu8KRTQQjJ-jq53vsNYdVBb6OcQrR6C60yYtDdOv1d6t9HP_pfmJZeS89ngcm8Q_OsIMenOxW0E04Mfo6aSSlEypsj_UVGWczVMbtEvx28d_vnXxQxkO-C3a2E66JTobc16W7OevfTPbys-b_4GAZ2bPg</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Sakalis, Philippe A.</creator><creator>Heusden, G. Paul H.</creator><creator>Hooykaas, Paul J. J.</creator><general>John Wiley &amp; Sons Ltd</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>201402</creationdate><title>Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells</title><author>Sakalis, Philippe A. ; Heusden, G. Paul H. ; Hooykaas, Paul J. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3712-2d9dccf02888930ea57e4b0ec1d8c05f0e2044b822b6e040f485dda5f68e16723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Agrobacterium tumefaciens</topic><topic>Agrobacterium tumefaciens - physiology</topic><topic>Agrobacterium tumefaciens - ultrastructure</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis - ultrastructure</topic><topic>Bacterial Proteins - analysis</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Proteins - ultrastructure</topic><topic>Bacterial Secretion Systems - physiology</topic><topic>BiFC</topic><topic>Computer Systems</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DNA-Binding Proteins - ultrastructure</topic><topic>Flow Cytometry</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Fluorescent Dyes</topic><topic>Green Fluorescent Proteins - analysis</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Ion Channels - metabolism</topic><topic>Ion Channels - ultrastructure</topic><topic>Luminescent Proteins - analysis</topic><topic>Luminescent Proteins - genetics</topic><topic>Microscopy, Confocal</topic><topic>Microtubules - microbiology</topic><topic>Microtubules - physiology</topic><topic>Nicotiana - microbiology</topic><topic>Nicotiana - ultrastructure</topic><topic>Original Research</topic><topic>Peptide Fragments - analysis</topic><topic>Peptide Fragments - genetics</topic><topic>Protein Binding</topic><topic>Protein Interaction Mapping</topic><topic>protein translocation</topic><topic>Protein Transport</topic><topic>Protoplasts</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - ultrastructure</topic><topic>split GFP</topic><topic>type 4 secretion system</topic><topic>VirE2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakalis, Philippe A.</creatorcontrib><creatorcontrib>Heusden, G. Paul H.</creatorcontrib><creatorcontrib>Hooykaas, Paul J. J.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>MicrobiologyOpen (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakalis, Philippe A.</au><au>Heusden, G. Paul H.</au><au>Hooykaas, Paul J. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells</atitle><jtitle>MicrobiologyOpen (Weinheim)</jtitle><addtitle>Microbiologyopen</addtitle><date>2014-02</date><risdate>2014</risdate><volume>3</volume><issue>1</issue><spage>104</spage><epage>117</epage><pages>104-117</pages><issn>2045-8827</issn><eissn>2045-8827</eissn><abstract>Type IV secretion systems (T4SS) can mediate the translocation of bacterial virulence proteins into host cells. The plant pathogen Agrobacterium tumefaciens uses a T4SS to deliver a VirD2‐single stranded DNA complex as well as the virulence proteins VirD5, VirE2, VirE3, and VirF into host cells so that these become genetically transformed. Besides plant cells, yeast and fungi can efficiently be transformed by Agrobacterium. Translocation of virulence proteins by the T4SS has so far only been shown indirectly by genetic approaches. Here we report the direct visualization of VirE2 protein translocation by using bimolecular fluorescence complementation (BiFC) and Split GFP visualization strategies. To this end, we cocultivated Agrobacterium strains expressing VirE2 tagged with one part of a fluorescent protein with host cells expressing the complementary part, either fused to VirE2 (for BiFC) or not (Split GFP). Fluorescent filaments became visible in recipient cells 20–25 h after the start of the cocultivation indicative of VirE2 protein translocation. Evidence was obtained that filament formation was due to the association of VirE2 with the microtubuli. Here we report the direct visualization of VirE2 protein translocation from Agrobacterium into host cells. To this end, we cocultivated Agrobacterium strains expressing VirE2 tagged with one part of a fluorescent protein with host cells expressing the complementary part. Fluorescent filaments became visible in recipient cells 20–25 h after the start of the cocultivation indicative of VirE2 protein translocation.</abstract><cop>England</cop><pub>John Wiley &amp; Sons Ltd</pub><pmid>24376037</pmid><doi>10.1002/mbo3.152</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-8827
ispartof MicrobiologyOpen (Weinheim), 2014-02, Vol.3 (1), p.104-117
issn 2045-8827
2045-8827
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3937733
source MEDLINE; DOAJ Directory of Open Access Journals; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central
subjects Agrobacterium tumefaciens
Agrobacterium tumefaciens - physiology
Agrobacterium tumefaciens - ultrastructure
Arabidopsis - microbiology
Arabidopsis - ultrastructure
Bacterial Proteins - analysis
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacterial Proteins - ultrastructure
Bacterial Secretion Systems - physiology
BiFC
Computer Systems
DNA-Binding Proteins - metabolism
DNA-Binding Proteins - ultrastructure
Flow Cytometry
Fluorescence Resonance Energy Transfer
Fluorescent Dyes
Green Fluorescent Proteins - analysis
Green Fluorescent Proteins - genetics
Ion Channels - metabolism
Ion Channels - ultrastructure
Luminescent Proteins - analysis
Luminescent Proteins - genetics
Microscopy, Confocal
Microtubules - microbiology
Microtubules - physiology
Nicotiana - microbiology
Nicotiana - ultrastructure
Original Research
Peptide Fragments - analysis
Peptide Fragments - genetics
Protein Binding
Protein Interaction Mapping
protein translocation
Protein Transport
Protoplasts
Saccharomyces cerevisiae
Saccharomyces cerevisiae - ultrastructure
split GFP
type 4 secretion system
VirE2
title Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualization%20of%20VirE2%20protein%20translocation%20by%20the%20Agrobacterium%20type%20IV%20secretion%20system%20into%20host%20cells&rft.jtitle=MicrobiologyOpen%20(Weinheim)&rft.au=Sakalis,%20Philippe%20A.&rft.date=2014-02&rft.volume=3&rft.issue=1&rft.spage=104&rft.epage=117&rft.pages=104-117&rft.issn=2045-8827&rft.eissn=2045-8827&rft_id=info:doi/10.1002/mbo3.152&rft_dat=%3Cproquest_pubme%3E1499152270%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499152270&rft_id=info:pmid/24376037&rfr_iscdi=true