Multiple genetic pathways regulate replicative senescence in telomerase‐deficient yeast
Summary Most human tissues express low levels of telomerase and undergo telomere shortening and eventual senescence; the resulting limitation on tissue renewal can lead to a wide range of age‐dependent pathophysiologies. Increasing evidence indicates that the decline in cell division capacity in cel...
Gespeichert in:
Veröffentlicht in: | Aging cell 2013-08, Vol.12 (4), p.719-727 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 727 |
---|---|
container_issue | 4 |
container_start_page | 719 |
container_title | Aging cell |
container_volume | 12 |
creator | Ballew, Bari J. Lundblad, Victoria |
description | Summary
Most human tissues express low levels of telomerase and undergo telomere shortening and eventual senescence; the resulting limitation on tissue renewal can lead to a wide range of age‐dependent pathophysiologies. Increasing evidence indicates that the decline in cell division capacity in cells that lack telomerase can be influenced by numerous genetic factors. Here, we use telomerase‐defective strains of budding yeast to probe whether replicative senescence can be attenuated or accelerated by defects in factors previously implicated in handling of DNA termini. We show that the MRX (Mre11‐Rad50‐Xrs2) complex, as well as negative (Rif2) and positive (Tel1) regulators of this complex, comprise a single pathway that promotes replicative senescence, in a manner that recapitulates how these proteins modulate resection of DNA ends. In contrast, the Rad51 recombinase, which acts downstream of the MRX complex in double‐strand break (DSB) repair, regulates replicative senescence through a separate pathway operating in opposition to the MRX‐Tel1‐Rif2 pathway. Moreover, defects in several additional proteins implicated in DSB repair (Rif1 and Sae2) confer only transient effects during early or late stages of replicative senescence, respectively, further suggesting that a simple analogy between DSBs and eroding telomeres is incomplete. These results indicate that the replicative capacity of telomerase‐defective yeast is controlled by a network comprised of multiple pathways. It is likely that telomere shortening in telomerase‐depleted human cells is similarly under a complex pattern of genetic control; mechanistic understanding of this process should provide crucial information regarding how human tissues age in response to telomere erosion. |
doi_str_mv | 10.1111/acel.12099 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3933227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1400621605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5099-c0bcc2e94f76e49e05b62d5bda4581c55961a9b17e65acea8aceefe2de5fd91c3</originalsourceid><addsrcrecordid>eNqNks9q3DAQxkVpadJNLn2AYsilFDbRyJZkXQJhSf_All6SQ05ClscbBa3tSnLC3voIfcY-SbXddGl7CNVBGtCPj29mPkJeAz2FfM6MRX8KjCr1jBxCJau5kkw839dQH5BXMd5RClLR8iU5YKWQrAJ6SG4-Tz650WOxwh6Ts8Vo0u2D2cQi4GryJmEuRu-sSe4ei5ipaLG3WLi-SOiHNQYT8ce37y12zjrsU7FBE9MRedEZH_H48Z2R6_eXV4uP8-WXD58WF8u55dnx3NLGWoaq6qTASiHljWAtb1pT8Ros50qAUQ1IFDw3aup8YYesRd61Cmw5I-c73XFq1thmbykYr8fg1iZs9GCc_vund7d6NdzrUpUlYzILvH0UCMPXCWPSa5db9N70OExRQ1XSmksO9X-glAoGgvKMnvyD3g1T6PMkdJ583k9ZKfkUtdWiAkS2OSPvdpQNQ4wBu313QPU2AnobAf0rAhl-8-c89ujvnWcAdsCD87h5QkpfLC6XO9Gfqeq-hw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1400061639</pqid></control><display><type>article</type><title>Multiple genetic pathways regulate replicative senescence in telomerase‐deficient yeast</title><source>Wiley-Blackwell Open Access Titles</source><creator>Ballew, Bari J. ; Lundblad, Victoria</creator><creatorcontrib>Ballew, Bari J. ; Lundblad, Victoria</creatorcontrib><description>Summary
Most human tissues express low levels of telomerase and undergo telomere shortening and eventual senescence; the resulting limitation on tissue renewal can lead to a wide range of age‐dependent pathophysiologies. Increasing evidence indicates that the decline in cell division capacity in cells that lack telomerase can be influenced by numerous genetic factors. Here, we use telomerase‐defective strains of budding yeast to probe whether replicative senescence can be attenuated or accelerated by defects in factors previously implicated in handling of DNA termini. We show that the MRX (Mre11‐Rad50‐Xrs2) complex, as well as negative (Rif2) and positive (Tel1) regulators of this complex, comprise a single pathway that promotes replicative senescence, in a manner that recapitulates how these proteins modulate resection of DNA ends. In contrast, the Rad51 recombinase, which acts downstream of the MRX complex in double‐strand break (DSB) repair, regulates replicative senescence through a separate pathway operating in opposition to the MRX‐Tel1‐Rif2 pathway. Moreover, defects in several additional proteins implicated in DSB repair (Rif1 and Sae2) confer only transient effects during early or late stages of replicative senescence, respectively, further suggesting that a simple analogy between DSBs and eroding telomeres is incomplete. These results indicate that the replicative capacity of telomerase‐defective yeast is controlled by a network comprised of multiple pathways. It is likely that telomere shortening in telomerase‐depleted human cells is similarly under a complex pattern of genetic control; mechanistic understanding of this process should provide crucial information regarding how human tissues age in response to telomere erosion.</description><identifier>ISSN: 1474-9718</identifier><identifier>EISSN: 1474-9726</identifier><identifier>DOI: 10.1111/acel.12099</identifier><identifier>PMID: 23672410</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Aging ; Cell cycle ; Cell Division ; Chromosomes ; Defects ; Deoxyribonucleic acid ; DNA ; DNA Repair ; DNA, Fungal - genetics ; DNA, Fungal - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Endodeoxyribonucleases - genetics ; Endodeoxyribonucleases - metabolism ; Endonucleases - genetics ; Endonucleases - metabolism ; Enzymes ; Exodeoxyribonucleases - genetics ; Exodeoxyribonucleases - metabolism ; Gene Expression Regulation, Fungal ; Genetic control ; Genetic factors ; Genetic recombination ; Genotype ; Genotype & phenotype ; Information processing ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; MRE11 protein ; MRX ; Mutation ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Proteins ; Rad51 ; Recombinase ; replicative senescence ; Rif2 ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Saccharomycetales - enzymology ; Saccharomycetales - genetics ; Saccharomycetales - growth & development ; Senescence ; Telomerase ; Telomere - genetics ; Telomere - metabolism ; Telomere Shortening ; Telomere-Binding Proteins - genetics ; Telomere-Binding Proteins - metabolism ; Telomeres ; Time Factors ; Yeast</subject><ispartof>Aging cell, 2013-08, Vol.12 (4), p.719-727</ispartof><rights>2013 John Wiley & Sons Ltd and the Anatomical Society</rights><rights>2013 John Wiley & Sons Ltd and the Anatomical Society.</rights><rights>2013 John Wiley & Sons Ltd and The Anatomical Society</rights><rights>2013. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5099-c0bcc2e94f76e49e05b62d5bda4581c55961a9b17e65acea8aceefe2de5fd91c3</citedby><cites>FETCH-LOGICAL-c5099-c0bcc2e94f76e49e05b62d5bda4581c55961a9b17e65acea8aceefe2de5fd91c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933227/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933227/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,1414,11549,27911,27912,45561,45562,46039,46463,53778,53780</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.12099$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23672410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ballew, Bari J.</creatorcontrib><creatorcontrib>Lundblad, Victoria</creatorcontrib><title>Multiple genetic pathways regulate replicative senescence in telomerase‐deficient yeast</title><title>Aging cell</title><addtitle>Aging Cell</addtitle><description>Summary
Most human tissues express low levels of telomerase and undergo telomere shortening and eventual senescence; the resulting limitation on tissue renewal can lead to a wide range of age‐dependent pathophysiologies. Increasing evidence indicates that the decline in cell division capacity in cells that lack telomerase can be influenced by numerous genetic factors. Here, we use telomerase‐defective strains of budding yeast to probe whether replicative senescence can be attenuated or accelerated by defects in factors previously implicated in handling of DNA termini. We show that the MRX (Mre11‐Rad50‐Xrs2) complex, as well as negative (Rif2) and positive (Tel1) regulators of this complex, comprise a single pathway that promotes replicative senescence, in a manner that recapitulates how these proteins modulate resection of DNA ends. In contrast, the Rad51 recombinase, which acts downstream of the MRX complex in double‐strand break (DSB) repair, regulates replicative senescence through a separate pathway operating in opposition to the MRX‐Tel1‐Rif2 pathway. Moreover, defects in several additional proteins implicated in DSB repair (Rif1 and Sae2) confer only transient effects during early or late stages of replicative senescence, respectively, further suggesting that a simple analogy between DSBs and eroding telomeres is incomplete. These results indicate that the replicative capacity of telomerase‐defective yeast is controlled by a network comprised of multiple pathways. It is likely that telomere shortening in telomerase‐depleted human cells is similarly under a complex pattern of genetic control; mechanistic understanding of this process should provide crucial information regarding how human tissues age in response to telomere erosion.</description><subject>Aging</subject><subject>Cell cycle</subject><subject>Cell Division</subject><subject>Chromosomes</subject><subject>Defects</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Repair</subject><subject>DNA, Fungal - genetics</subject><subject>DNA, Fungal - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Endodeoxyribonucleases - genetics</subject><subject>Endodeoxyribonucleases - metabolism</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - metabolism</subject><subject>Enzymes</subject><subject>Exodeoxyribonucleases - genetics</subject><subject>Exodeoxyribonucleases - metabolism</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genetic control</subject><subject>Genetic factors</subject><subject>Genetic recombination</subject><subject>Genotype</subject><subject>Genotype & phenotype</subject><subject>Information processing</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>MRE11 protein</subject><subject>MRX</subject><subject>Mutation</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>Rad51</subject><subject>Recombinase</subject><subject>replicative senescence</subject><subject>Rif2</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Saccharomycetales - enzymology</subject><subject>Saccharomycetales - genetics</subject><subject>Saccharomycetales - growth & development</subject><subject>Senescence</subject><subject>Telomerase</subject><subject>Telomere - genetics</subject><subject>Telomere - metabolism</subject><subject>Telomere Shortening</subject><subject>Telomere-Binding Proteins - genetics</subject><subject>Telomere-Binding Proteins - metabolism</subject><subject>Telomeres</subject><subject>Time Factors</subject><subject>Yeast</subject><issn>1474-9718</issn><issn>1474-9726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9q3DAQxkVpadJNLn2AYsilFDbRyJZkXQJhSf_All6SQ05ClscbBa3tSnLC3voIfcY-SbXddGl7CNVBGtCPj29mPkJeAz2FfM6MRX8KjCr1jBxCJau5kkw839dQH5BXMd5RClLR8iU5YKWQrAJ6SG4-Tz650WOxwh6Ts8Vo0u2D2cQi4GryJmEuRu-sSe4ei5ipaLG3WLi-SOiHNQYT8ce37y12zjrsU7FBE9MRedEZH_H48Z2R6_eXV4uP8-WXD58WF8u55dnx3NLGWoaq6qTASiHljWAtb1pT8Ros50qAUQ1IFDw3aup8YYesRd61Cmw5I-c73XFq1thmbykYr8fg1iZs9GCc_vund7d6NdzrUpUlYzILvH0UCMPXCWPSa5db9N70OExRQ1XSmksO9X-glAoGgvKMnvyD3g1T6PMkdJ583k9ZKfkUtdWiAkS2OSPvdpQNQ4wBu313QPU2AnobAf0rAhl-8-c89ujvnWcAdsCD87h5QkpfLC6XO9Gfqeq-hw</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Ballew, Bari J.</creator><creator>Lundblad, Victoria</creator><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201308</creationdate><title>Multiple genetic pathways regulate replicative senescence in telomerase‐deficient yeast</title><author>Ballew, Bari J. ; Lundblad, Victoria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5099-c0bcc2e94f76e49e05b62d5bda4581c55961a9b17e65acea8aceefe2de5fd91c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aging</topic><topic>Cell cycle</topic><topic>Cell Division</topic><topic>Chromosomes</topic><topic>Defects</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Repair</topic><topic>DNA, Fungal - genetics</topic><topic>DNA, Fungal - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Endodeoxyribonucleases - genetics</topic><topic>Endodeoxyribonucleases - metabolism</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - metabolism</topic><topic>Enzymes</topic><topic>Exodeoxyribonucleases - genetics</topic><topic>Exodeoxyribonucleases - metabolism</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genetic control</topic><topic>Genetic factors</topic><topic>Genetic recombination</topic><topic>Genotype</topic><topic>Genotype & phenotype</topic><topic>Information processing</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>MRE11 protein</topic><topic>MRX</topic><topic>Mutation</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>Rad51</topic><topic>Recombinase</topic><topic>replicative senescence</topic><topic>Rif2</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Saccharomycetales - enzymology</topic><topic>Saccharomycetales - genetics</topic><topic>Saccharomycetales - growth & development</topic><topic>Senescence</topic><topic>Telomerase</topic><topic>Telomere - genetics</topic><topic>Telomere - metabolism</topic><topic>Telomere Shortening</topic><topic>Telomere-Binding Proteins - genetics</topic><topic>Telomere-Binding Proteins - metabolism</topic><topic>Telomeres</topic><topic>Time Factors</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ballew, Bari J.</creatorcontrib><creatorcontrib>Lundblad, Victoria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Aging cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ballew, Bari J.</au><au>Lundblad, Victoria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple genetic pathways regulate replicative senescence in telomerase‐deficient yeast</atitle><jtitle>Aging cell</jtitle><addtitle>Aging Cell</addtitle><date>2013-08</date><risdate>2013</risdate><volume>12</volume><issue>4</issue><spage>719</spage><epage>727</epage><pages>719-727</pages><issn>1474-9718</issn><eissn>1474-9726</eissn><abstract>Summary
Most human tissues express low levels of telomerase and undergo telomere shortening and eventual senescence; the resulting limitation on tissue renewal can lead to a wide range of age‐dependent pathophysiologies. Increasing evidence indicates that the decline in cell division capacity in cells that lack telomerase can be influenced by numerous genetic factors. Here, we use telomerase‐defective strains of budding yeast to probe whether replicative senescence can be attenuated or accelerated by defects in factors previously implicated in handling of DNA termini. We show that the MRX (Mre11‐Rad50‐Xrs2) complex, as well as negative (Rif2) and positive (Tel1) regulators of this complex, comprise a single pathway that promotes replicative senescence, in a manner that recapitulates how these proteins modulate resection of DNA ends. In contrast, the Rad51 recombinase, which acts downstream of the MRX complex in double‐strand break (DSB) repair, regulates replicative senescence through a separate pathway operating in opposition to the MRX‐Tel1‐Rif2 pathway. Moreover, defects in several additional proteins implicated in DSB repair (Rif1 and Sae2) confer only transient effects during early or late stages of replicative senescence, respectively, further suggesting that a simple analogy between DSBs and eroding telomeres is incomplete. These results indicate that the replicative capacity of telomerase‐defective yeast is controlled by a network comprised of multiple pathways. It is likely that telomere shortening in telomerase‐depleted human cells is similarly under a complex pattern of genetic control; mechanistic understanding of this process should provide crucial information regarding how human tissues age in response to telomere erosion.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>23672410</pmid><doi>10.1111/acel.12099</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1474-9718 |
ispartof | Aging cell, 2013-08, Vol.12 (4), p.719-727 |
issn | 1474-9718 1474-9726 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3933227 |
source | Wiley-Blackwell Open Access Titles |
subjects | Aging Cell cycle Cell Division Chromosomes Defects Deoxyribonucleic acid DNA DNA Repair DNA, Fungal - genetics DNA, Fungal - metabolism DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Endodeoxyribonucleases - genetics Endodeoxyribonucleases - metabolism Endonucleases - genetics Endonucleases - metabolism Enzymes Exodeoxyribonucleases - genetics Exodeoxyribonucleases - metabolism Gene Expression Regulation, Fungal Genetic control Genetic factors Genetic recombination Genotype Genotype & phenotype Information processing Intracellular Signaling Peptides and Proteins - genetics Intracellular Signaling Peptides and Proteins - metabolism MRE11 protein MRX Mutation Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism Proteins Rad51 Recombinase replicative senescence Rif2 Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Saccharomycetales - enzymology Saccharomycetales - genetics Saccharomycetales - growth & development Senescence Telomerase Telomere - genetics Telomere - metabolism Telomere Shortening Telomere-Binding Proteins - genetics Telomere-Binding Proteins - metabolism Telomeres Time Factors Yeast |
title | Multiple genetic pathways regulate replicative senescence in telomerase‐deficient yeast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20genetic%20pathways%20regulate%20replicative%20senescence%20in%20telomerase%E2%80%90deficient%20yeast&rft.jtitle=Aging%20cell&rft.au=Ballew,%20Bari%20J.&rft.date=2013-08&rft.volume=12&rft.issue=4&rft.spage=719&rft.epage=727&rft.pages=719-727&rft.issn=1474-9718&rft.eissn=1474-9726&rft_id=info:doi/10.1111/acel.12099&rft_dat=%3Cproquest_24P%3E1400621605%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1400061639&rft_id=info:pmid/23672410&rfr_iscdi=true |