Multiple genetic pathways regulate replicative senescence in telomerase‐deficient yeast

Summary Most human tissues express low levels of telomerase and undergo telomere shortening and eventual senescence; the resulting limitation on tissue renewal can lead to a wide range of age‐dependent pathophysiologies. Increasing evidence indicates that the decline in cell division capacity in cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aging cell 2013-08, Vol.12 (4), p.719-727
Hauptverfasser: Ballew, Bari J., Lundblad, Victoria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 727
container_issue 4
container_start_page 719
container_title Aging cell
container_volume 12
creator Ballew, Bari J.
Lundblad, Victoria
description Summary Most human tissues express low levels of telomerase and undergo telomere shortening and eventual senescence; the resulting limitation on tissue renewal can lead to a wide range of age‐dependent pathophysiologies. Increasing evidence indicates that the decline in cell division capacity in cells that lack telomerase can be influenced by numerous genetic factors. Here, we use telomerase‐defective strains of budding yeast to probe whether replicative senescence can be attenuated or accelerated by defects in factors previously implicated in handling of DNA termini. We show that the MRX (Mre11‐Rad50‐Xrs2) complex, as well as negative (Rif2) and positive (Tel1) regulators of this complex, comprise a single pathway that promotes replicative senescence, in a manner that recapitulates how these proteins modulate resection of DNA ends. In contrast, the Rad51 recombinase, which acts downstream of the MRX complex in double‐strand break (DSB) repair, regulates replicative senescence through a separate pathway operating in opposition to the MRX‐Tel1‐Rif2 pathway. Moreover, defects in several additional proteins implicated in DSB repair (Rif1 and Sae2) confer only transient effects during early or late stages of replicative senescence, respectively, further suggesting that a simple analogy between DSBs and eroding telomeres is incomplete. These results indicate that the replicative capacity of telomerase‐defective yeast is controlled by a network comprised of multiple pathways. It is likely that telomere shortening in telomerase‐depleted human cells is similarly under a complex pattern of genetic control; mechanistic understanding of this process should provide crucial information regarding how human tissues age in response to telomere erosion.
doi_str_mv 10.1111/acel.12099
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3933227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1400621605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5099-c0bcc2e94f76e49e05b62d5bda4581c55961a9b17e65acea8aceefe2de5fd91c3</originalsourceid><addsrcrecordid>eNqNks9q3DAQxkVpadJNLn2AYsilFDbRyJZkXQJhSf_All6SQ05ClscbBa3tSnLC3voIfcY-SbXddGl7CNVBGtCPj29mPkJeAz2FfM6MRX8KjCr1jBxCJau5kkw839dQH5BXMd5RClLR8iU5YKWQrAJ6SG4-Tz650WOxwh6Ts8Vo0u2D2cQi4GryJmEuRu-sSe4ei5ipaLG3WLi-SOiHNQYT8ce37y12zjrsU7FBE9MRedEZH_H48Z2R6_eXV4uP8-WXD58WF8u55dnx3NLGWoaq6qTASiHljWAtb1pT8Ros50qAUQ1IFDw3aup8YYesRd61Cmw5I-c73XFq1thmbykYr8fg1iZs9GCc_vund7d6NdzrUpUlYzILvH0UCMPXCWPSa5db9N70OExRQ1XSmksO9X-glAoGgvKMnvyD3g1T6PMkdJ583k9ZKfkUtdWiAkS2OSPvdpQNQ4wBu313QPU2AnobAf0rAhl-8-c89ujvnWcAdsCD87h5QkpfLC6XO9Gfqeq-hw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1400061639</pqid></control><display><type>article</type><title>Multiple genetic pathways regulate replicative senescence in telomerase‐deficient yeast</title><source>Wiley-Blackwell Open Access Titles</source><creator>Ballew, Bari J. ; Lundblad, Victoria</creator><creatorcontrib>Ballew, Bari J. ; Lundblad, Victoria</creatorcontrib><description>Summary Most human tissues express low levels of telomerase and undergo telomere shortening and eventual senescence; the resulting limitation on tissue renewal can lead to a wide range of age‐dependent pathophysiologies. Increasing evidence indicates that the decline in cell division capacity in cells that lack telomerase can be influenced by numerous genetic factors. Here, we use telomerase‐defective strains of budding yeast to probe whether replicative senescence can be attenuated or accelerated by defects in factors previously implicated in handling of DNA termini. We show that the MRX (Mre11‐Rad50‐Xrs2) complex, as well as negative (Rif2) and positive (Tel1) regulators of this complex, comprise a single pathway that promotes replicative senescence, in a manner that recapitulates how these proteins modulate resection of DNA ends. In contrast, the Rad51 recombinase, which acts downstream of the MRX complex in double‐strand break (DSB) repair, regulates replicative senescence through a separate pathway operating in opposition to the MRX‐Tel1‐Rif2 pathway. Moreover, defects in several additional proteins implicated in DSB repair (Rif1 and Sae2) confer only transient effects during early or late stages of replicative senescence, respectively, further suggesting that a simple analogy between DSBs and eroding telomeres is incomplete. These results indicate that the replicative capacity of telomerase‐defective yeast is controlled by a network comprised of multiple pathways. It is likely that telomere shortening in telomerase‐depleted human cells is similarly under a complex pattern of genetic control; mechanistic understanding of this process should provide crucial information regarding how human tissues age in response to telomere erosion.</description><identifier>ISSN: 1474-9718</identifier><identifier>EISSN: 1474-9726</identifier><identifier>DOI: 10.1111/acel.12099</identifier><identifier>PMID: 23672410</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Aging ; Cell cycle ; Cell Division ; Chromosomes ; Defects ; Deoxyribonucleic acid ; DNA ; DNA Repair ; DNA, Fungal - genetics ; DNA, Fungal - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Endodeoxyribonucleases - genetics ; Endodeoxyribonucleases - metabolism ; Endonucleases - genetics ; Endonucleases - metabolism ; Enzymes ; Exodeoxyribonucleases - genetics ; Exodeoxyribonucleases - metabolism ; Gene Expression Regulation, Fungal ; Genetic control ; Genetic factors ; Genetic recombination ; Genotype ; Genotype &amp; phenotype ; Information processing ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; MRE11 protein ; MRX ; Mutation ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Proteins ; Rad51 ; Recombinase ; replicative senescence ; Rif2 ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Saccharomycetales - enzymology ; Saccharomycetales - genetics ; Saccharomycetales - growth &amp; development ; Senescence ; Telomerase ; Telomere - genetics ; Telomere - metabolism ; Telomere Shortening ; Telomere-Binding Proteins - genetics ; Telomere-Binding Proteins - metabolism ; Telomeres ; Time Factors ; Yeast</subject><ispartof>Aging cell, 2013-08, Vol.12 (4), p.719-727</ispartof><rights>2013 John Wiley &amp; Sons Ltd and the Anatomical Society</rights><rights>2013 John Wiley &amp; Sons Ltd and the Anatomical Society.</rights><rights>2013 John Wiley &amp; Sons Ltd and The Anatomical Society</rights><rights>2013. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5099-c0bcc2e94f76e49e05b62d5bda4581c55961a9b17e65acea8aceefe2de5fd91c3</citedby><cites>FETCH-LOGICAL-c5099-c0bcc2e94f76e49e05b62d5bda4581c55961a9b17e65acea8aceefe2de5fd91c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933227/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933227/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,1414,11549,27911,27912,45561,45562,46039,46463,53778,53780</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.12099$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23672410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ballew, Bari J.</creatorcontrib><creatorcontrib>Lundblad, Victoria</creatorcontrib><title>Multiple genetic pathways regulate replicative senescence in telomerase‐deficient yeast</title><title>Aging cell</title><addtitle>Aging Cell</addtitle><description>Summary Most human tissues express low levels of telomerase and undergo telomere shortening and eventual senescence; the resulting limitation on tissue renewal can lead to a wide range of age‐dependent pathophysiologies. Increasing evidence indicates that the decline in cell division capacity in cells that lack telomerase can be influenced by numerous genetic factors. Here, we use telomerase‐defective strains of budding yeast to probe whether replicative senescence can be attenuated or accelerated by defects in factors previously implicated in handling of DNA termini. We show that the MRX (Mre11‐Rad50‐Xrs2) complex, as well as negative (Rif2) and positive (Tel1) regulators of this complex, comprise a single pathway that promotes replicative senescence, in a manner that recapitulates how these proteins modulate resection of DNA ends. In contrast, the Rad51 recombinase, which acts downstream of the MRX complex in double‐strand break (DSB) repair, regulates replicative senescence through a separate pathway operating in opposition to the MRX‐Tel1‐Rif2 pathway. Moreover, defects in several additional proteins implicated in DSB repair (Rif1 and Sae2) confer only transient effects during early or late stages of replicative senescence, respectively, further suggesting that a simple analogy between DSBs and eroding telomeres is incomplete. These results indicate that the replicative capacity of telomerase‐defective yeast is controlled by a network comprised of multiple pathways. It is likely that telomere shortening in telomerase‐depleted human cells is similarly under a complex pattern of genetic control; mechanistic understanding of this process should provide crucial information regarding how human tissues age in response to telomere erosion.</description><subject>Aging</subject><subject>Cell cycle</subject><subject>Cell Division</subject><subject>Chromosomes</subject><subject>Defects</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Repair</subject><subject>DNA, Fungal - genetics</subject><subject>DNA, Fungal - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Endodeoxyribonucleases - genetics</subject><subject>Endodeoxyribonucleases - metabolism</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - metabolism</subject><subject>Enzymes</subject><subject>Exodeoxyribonucleases - genetics</subject><subject>Exodeoxyribonucleases - metabolism</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genetic control</subject><subject>Genetic factors</subject><subject>Genetic recombination</subject><subject>Genotype</subject><subject>Genotype &amp; phenotype</subject><subject>Information processing</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>MRE11 protein</subject><subject>MRX</subject><subject>Mutation</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>Rad51</subject><subject>Recombinase</subject><subject>replicative senescence</subject><subject>Rif2</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Saccharomycetales - enzymology</subject><subject>Saccharomycetales - genetics</subject><subject>Saccharomycetales - growth &amp; development</subject><subject>Senescence</subject><subject>Telomerase</subject><subject>Telomere - genetics</subject><subject>Telomere - metabolism</subject><subject>Telomere Shortening</subject><subject>Telomere-Binding Proteins - genetics</subject><subject>Telomere-Binding Proteins - metabolism</subject><subject>Telomeres</subject><subject>Time Factors</subject><subject>Yeast</subject><issn>1474-9718</issn><issn>1474-9726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9q3DAQxkVpadJNLn2AYsilFDbRyJZkXQJhSf_All6SQ05ClscbBa3tSnLC3voIfcY-SbXddGl7CNVBGtCPj29mPkJeAz2FfM6MRX8KjCr1jBxCJau5kkw839dQH5BXMd5RClLR8iU5YKWQrAJ6SG4-Tz650WOxwh6Ts8Vo0u2D2cQi4GryJmEuRu-sSe4ei5ipaLG3WLi-SOiHNQYT8ce37y12zjrsU7FBE9MRedEZH_H48Z2R6_eXV4uP8-WXD58WF8u55dnx3NLGWoaq6qTASiHljWAtb1pT8Ros50qAUQ1IFDw3aup8YYesRd61Cmw5I-c73XFq1thmbykYr8fg1iZs9GCc_vund7d6NdzrUpUlYzILvH0UCMPXCWPSa5db9N70OExRQ1XSmksO9X-glAoGgvKMnvyD3g1T6PMkdJ583k9ZKfkUtdWiAkS2OSPvdpQNQ4wBu313QPU2AnobAf0rAhl-8-c89ujvnWcAdsCD87h5QkpfLC6XO9Gfqeq-hw</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Ballew, Bari J.</creator><creator>Lundblad, Victoria</creator><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201308</creationdate><title>Multiple genetic pathways regulate replicative senescence in telomerase‐deficient yeast</title><author>Ballew, Bari J. ; Lundblad, Victoria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5099-c0bcc2e94f76e49e05b62d5bda4581c55961a9b17e65acea8aceefe2de5fd91c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aging</topic><topic>Cell cycle</topic><topic>Cell Division</topic><topic>Chromosomes</topic><topic>Defects</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Repair</topic><topic>DNA, Fungal - genetics</topic><topic>DNA, Fungal - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Endodeoxyribonucleases - genetics</topic><topic>Endodeoxyribonucleases - metabolism</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - metabolism</topic><topic>Enzymes</topic><topic>Exodeoxyribonucleases - genetics</topic><topic>Exodeoxyribonucleases - metabolism</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genetic control</topic><topic>Genetic factors</topic><topic>Genetic recombination</topic><topic>Genotype</topic><topic>Genotype &amp; phenotype</topic><topic>Information processing</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>MRE11 protein</topic><topic>MRX</topic><topic>Mutation</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>Rad51</topic><topic>Recombinase</topic><topic>replicative senescence</topic><topic>Rif2</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Saccharomycetales - enzymology</topic><topic>Saccharomycetales - genetics</topic><topic>Saccharomycetales - growth &amp; development</topic><topic>Senescence</topic><topic>Telomerase</topic><topic>Telomere - genetics</topic><topic>Telomere - metabolism</topic><topic>Telomere Shortening</topic><topic>Telomere-Binding Proteins - genetics</topic><topic>Telomere-Binding Proteins - metabolism</topic><topic>Telomeres</topic><topic>Time Factors</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ballew, Bari J.</creatorcontrib><creatorcontrib>Lundblad, Victoria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Aging cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ballew, Bari J.</au><au>Lundblad, Victoria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple genetic pathways regulate replicative senescence in telomerase‐deficient yeast</atitle><jtitle>Aging cell</jtitle><addtitle>Aging Cell</addtitle><date>2013-08</date><risdate>2013</risdate><volume>12</volume><issue>4</issue><spage>719</spage><epage>727</epage><pages>719-727</pages><issn>1474-9718</issn><eissn>1474-9726</eissn><abstract>Summary Most human tissues express low levels of telomerase and undergo telomere shortening and eventual senescence; the resulting limitation on tissue renewal can lead to a wide range of age‐dependent pathophysiologies. Increasing evidence indicates that the decline in cell division capacity in cells that lack telomerase can be influenced by numerous genetic factors. Here, we use telomerase‐defective strains of budding yeast to probe whether replicative senescence can be attenuated or accelerated by defects in factors previously implicated in handling of DNA termini. We show that the MRX (Mre11‐Rad50‐Xrs2) complex, as well as negative (Rif2) and positive (Tel1) regulators of this complex, comprise a single pathway that promotes replicative senescence, in a manner that recapitulates how these proteins modulate resection of DNA ends. In contrast, the Rad51 recombinase, which acts downstream of the MRX complex in double‐strand break (DSB) repair, regulates replicative senescence through a separate pathway operating in opposition to the MRX‐Tel1‐Rif2 pathway. Moreover, defects in several additional proteins implicated in DSB repair (Rif1 and Sae2) confer only transient effects during early or late stages of replicative senescence, respectively, further suggesting that a simple analogy between DSBs and eroding telomeres is incomplete. These results indicate that the replicative capacity of telomerase‐defective yeast is controlled by a network comprised of multiple pathways. It is likely that telomere shortening in telomerase‐depleted human cells is similarly under a complex pattern of genetic control; mechanistic understanding of this process should provide crucial information regarding how human tissues age in response to telomere erosion.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>23672410</pmid><doi>10.1111/acel.12099</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1474-9718
ispartof Aging cell, 2013-08, Vol.12 (4), p.719-727
issn 1474-9718
1474-9726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3933227
source Wiley-Blackwell Open Access Titles
subjects Aging
Cell cycle
Cell Division
Chromosomes
Defects
Deoxyribonucleic acid
DNA
DNA Repair
DNA, Fungal - genetics
DNA, Fungal - metabolism
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Endodeoxyribonucleases - genetics
Endodeoxyribonucleases - metabolism
Endonucleases - genetics
Endonucleases - metabolism
Enzymes
Exodeoxyribonucleases - genetics
Exodeoxyribonucleases - metabolism
Gene Expression Regulation, Fungal
Genetic control
Genetic factors
Genetic recombination
Genotype
Genotype & phenotype
Information processing
Intracellular Signaling Peptides and Proteins - genetics
Intracellular Signaling Peptides and Proteins - metabolism
MRE11 protein
MRX
Mutation
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Proteins
Rad51
Recombinase
replicative senescence
Rif2
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Saccharomycetales - enzymology
Saccharomycetales - genetics
Saccharomycetales - growth & development
Senescence
Telomerase
Telomere - genetics
Telomere - metabolism
Telomere Shortening
Telomere-Binding Proteins - genetics
Telomere-Binding Proteins - metabolism
Telomeres
Time Factors
Yeast
title Multiple genetic pathways regulate replicative senescence in telomerase‐deficient yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20genetic%20pathways%20regulate%20replicative%20senescence%20in%20telomerase%E2%80%90deficient%20yeast&rft.jtitle=Aging%20cell&rft.au=Ballew,%20Bari%20J.&rft.date=2013-08&rft.volume=12&rft.issue=4&rft.spage=719&rft.epage=727&rft.pages=719-727&rft.issn=1474-9718&rft.eissn=1474-9726&rft_id=info:doi/10.1111/acel.12099&rft_dat=%3Cproquest_24P%3E1400621605%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1400061639&rft_id=info:pmid/23672410&rfr_iscdi=true