A review of approaches to identifying patient phenotype cohorts using electronic health records

To summarize literature describing approaches aimed at automatically identifying patients with a common phenotype. We performed a review of studies describing systems or reporting techniques developed for identifying cohorts of patients with specific phenotypes. Every full text article published in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Medical Informatics Association : JAMIA 2014-03, Vol.21 (2), p.221-230
Hauptverfasser: Shivade, Chaitanya, Raghavan, Preethi, Fosler-Lussier, Eric, Embi, Peter J, Elhadad, Noemie, Johnson, Stephen B, Lai, Albert M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 230
container_issue 2
container_start_page 221
container_title Journal of the American Medical Informatics Association : JAMIA
container_volume 21
creator Shivade, Chaitanya
Raghavan, Preethi
Fosler-Lussier, Eric
Embi, Peter J
Elhadad, Noemie
Johnson, Stephen B
Lai, Albert M
description To summarize literature describing approaches aimed at automatically identifying patients with a common phenotype. We performed a review of studies describing systems or reporting techniques developed for identifying cohorts of patients with specific phenotypes. Every full text article published in (1) Journal of American Medical Informatics Association, (2) Journal of Biomedical Informatics, (3) Proceedings of the Annual American Medical Informatics Association Symposium, and (4) Proceedings of Clinical Research Informatics Conference within the past 3 years was assessed for inclusion in the review. Only articles using automated techniques were included. Ninety-seven articles met our inclusion criteria. Forty-six used natural language processing (NLP)-based techniques, 24 described rule-based systems, 41 used statistical analyses, data mining, or machine learning techniques, while 22 described hybrid systems. Nine articles described the architecture of large-scale systems developed for determining cohort eligibility of patients. We observe that there is a rise in the number of studies associated with cohort identification using electronic medical records. Statistical analyses or machine learning, followed by NLP techniques, are gaining popularity over the years in comparison with rule-based systems. There are a variety of approaches for classifying patients into a particular phenotype. Different techniques and data sources are used, and good performance is reported on datasets at respective institutions. However, no system makes comprehensive use of electronic medical records addressing all of their known weaknesses.
doi_str_mv 10.1136/amiajnl-2013-001935
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3932460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1499133143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-38996f8a76bb18bf9948cadbd9deb0dee3d5596dce41b362ab9962034ade7de43</originalsourceid><addsrcrecordid>eNpVkVtLwzAYhoMobh5-gSC59KaaNGm73AhjeIKBNwrehTT5ajO6pibZZP_ejM2hVzl8z_sm8CB0Rcktpay8U0urFn2X5YSyjBAqWHGExrTIq0xU_OM47UlZZQXJqxE6C2GRmDJnxSka5TyF0v0YySn2sLbwjV2D1TB4p3QLAUeHrYE-2mZj-088qGjTCQ8t9C5uBsDatc7HgFdhO4cOdPSutxq3oLrYplbtvAkX6KRRXYDL_XqO3h8f3mbP2fz16WU2nWeaVzRmbCJE2UxUVdY1ndSNEHyilamNMFATA8BMUYjSaOC0ZmWu6sTnhHFloDLA2Tm63_UOq3oJieujV50cvF0qv5FOWfl_0ttWfrq1ZILlvCSp4GZf4N3XCkKUSxs0dJ3qwa2CpFwIyhjlLKFsh2rvQvDQHJ6hRG7VyL0auVUjd2pS6vrvDw-ZXxfsB3xkj_4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499133143</pqid></control><display><type>article</type><title>A review of approaches to identifying patient phenotype cohorts using electronic health records</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Shivade, Chaitanya ; Raghavan, Preethi ; Fosler-Lussier, Eric ; Embi, Peter J ; Elhadad, Noemie ; Johnson, Stephen B ; Lai, Albert M</creator><creatorcontrib>Shivade, Chaitanya ; Raghavan, Preethi ; Fosler-Lussier, Eric ; Embi, Peter J ; Elhadad, Noemie ; Johnson, Stephen B ; Lai, Albert M</creatorcontrib><description>To summarize literature describing approaches aimed at automatically identifying patients with a common phenotype. We performed a review of studies describing systems or reporting techniques developed for identifying cohorts of patients with specific phenotypes. Every full text article published in (1) Journal of American Medical Informatics Association, (2) Journal of Biomedical Informatics, (3) Proceedings of the Annual American Medical Informatics Association Symposium, and (4) Proceedings of Clinical Research Informatics Conference within the past 3 years was assessed for inclusion in the review. Only articles using automated techniques were included. Ninety-seven articles met our inclusion criteria. Forty-six used natural language processing (NLP)-based techniques, 24 described rule-based systems, 41 used statistical analyses, data mining, or machine learning techniques, while 22 described hybrid systems. Nine articles described the architecture of large-scale systems developed for determining cohort eligibility of patients. We observe that there is a rise in the number of studies associated with cohort identification using electronic medical records. Statistical analyses or machine learning, followed by NLP techniques, are gaining popularity over the years in comparison with rule-based systems. There are a variety of approaches for classifying patients into a particular phenotype. Different techniques and data sources are used, and good performance is reported on datasets at respective institutions. However, no system makes comprehensive use of electronic medical records addressing all of their known weaknesses.</description><identifier>ISSN: 1067-5027</identifier><identifier>EISSN: 1527-974X</identifier><identifier>DOI: 10.1136/amiajnl-2013-001935</identifier><identifier>PMID: 24201027</identifier><language>eng</language><publisher>England: BMJ Publishing Group</publisher><subject>Artificial Intelligence ; Data Mining - methods ; Diagnosis ; Electronic Health Records ; Humans ; Natural Language Processing ; Phenotype ; Review ; Statistics as Topic ; Vocabulary, Controlled</subject><ispartof>Journal of the American Medical Informatics Association : JAMIA, 2014-03, Vol.21 (2), p.221-230</ispartof><rights>Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-38996f8a76bb18bf9948cadbd9deb0dee3d5596dce41b362ab9962034ade7de43</citedby><cites>FETCH-LOGICAL-c471t-38996f8a76bb18bf9948cadbd9deb0dee3d5596dce41b362ab9962034ade7de43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932460/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932460/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24201027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shivade, Chaitanya</creatorcontrib><creatorcontrib>Raghavan, Preethi</creatorcontrib><creatorcontrib>Fosler-Lussier, Eric</creatorcontrib><creatorcontrib>Embi, Peter J</creatorcontrib><creatorcontrib>Elhadad, Noemie</creatorcontrib><creatorcontrib>Johnson, Stephen B</creatorcontrib><creatorcontrib>Lai, Albert M</creatorcontrib><title>A review of approaches to identifying patient phenotype cohorts using electronic health records</title><title>Journal of the American Medical Informatics Association : JAMIA</title><addtitle>J Am Med Inform Assoc</addtitle><description>To summarize literature describing approaches aimed at automatically identifying patients with a common phenotype. We performed a review of studies describing systems or reporting techniques developed for identifying cohorts of patients with specific phenotypes. Every full text article published in (1) Journal of American Medical Informatics Association, (2) Journal of Biomedical Informatics, (3) Proceedings of the Annual American Medical Informatics Association Symposium, and (4) Proceedings of Clinical Research Informatics Conference within the past 3 years was assessed for inclusion in the review. Only articles using automated techniques were included. Ninety-seven articles met our inclusion criteria. Forty-six used natural language processing (NLP)-based techniques, 24 described rule-based systems, 41 used statistical analyses, data mining, or machine learning techniques, while 22 described hybrid systems. Nine articles described the architecture of large-scale systems developed for determining cohort eligibility of patients. We observe that there is a rise in the number of studies associated with cohort identification using electronic medical records. Statistical analyses or machine learning, followed by NLP techniques, are gaining popularity over the years in comparison with rule-based systems. There are a variety of approaches for classifying patients into a particular phenotype. Different techniques and data sources are used, and good performance is reported on datasets at respective institutions. However, no system makes comprehensive use of electronic medical records addressing all of their known weaknesses.</description><subject>Artificial Intelligence</subject><subject>Data Mining - methods</subject><subject>Diagnosis</subject><subject>Electronic Health Records</subject><subject>Humans</subject><subject>Natural Language Processing</subject><subject>Phenotype</subject><subject>Review</subject><subject>Statistics as Topic</subject><subject>Vocabulary, Controlled</subject><issn>1067-5027</issn><issn>1527-974X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkVtLwzAYhoMobh5-gSC59KaaNGm73AhjeIKBNwrehTT5ajO6pibZZP_ejM2hVzl8z_sm8CB0Rcktpay8U0urFn2X5YSyjBAqWHGExrTIq0xU_OM47UlZZQXJqxE6C2GRmDJnxSka5TyF0v0YySn2sLbwjV2D1TB4p3QLAUeHrYE-2mZj-088qGjTCQ8t9C5uBsDatc7HgFdhO4cOdPSutxq3oLrYplbtvAkX6KRRXYDL_XqO3h8f3mbP2fz16WU2nWeaVzRmbCJE2UxUVdY1ndSNEHyilamNMFATA8BMUYjSaOC0ZmWu6sTnhHFloDLA2Tm63_UOq3oJieujV50cvF0qv5FOWfl_0ttWfrq1ZILlvCSp4GZf4N3XCkKUSxs0dJ3qwa2CpFwIyhjlLKFsh2rvQvDQHJ6hRG7VyL0auVUjd2pS6vrvDw-ZXxfsB3xkj_4</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Shivade, Chaitanya</creator><creator>Raghavan, Preethi</creator><creator>Fosler-Lussier, Eric</creator><creator>Embi, Peter J</creator><creator>Elhadad, Noemie</creator><creator>Johnson, Stephen B</creator><creator>Lai, Albert M</creator><general>BMJ Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140301</creationdate><title>A review of approaches to identifying patient phenotype cohorts using electronic health records</title><author>Shivade, Chaitanya ; Raghavan, Preethi ; Fosler-Lussier, Eric ; Embi, Peter J ; Elhadad, Noemie ; Johnson, Stephen B ; Lai, Albert M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-38996f8a76bb18bf9948cadbd9deb0dee3d5596dce41b362ab9962034ade7de43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial Intelligence</topic><topic>Data Mining - methods</topic><topic>Diagnosis</topic><topic>Electronic Health Records</topic><topic>Humans</topic><topic>Natural Language Processing</topic><topic>Phenotype</topic><topic>Review</topic><topic>Statistics as Topic</topic><topic>Vocabulary, Controlled</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shivade, Chaitanya</creatorcontrib><creatorcontrib>Raghavan, Preethi</creatorcontrib><creatorcontrib>Fosler-Lussier, Eric</creatorcontrib><creatorcontrib>Embi, Peter J</creatorcontrib><creatorcontrib>Elhadad, Noemie</creatorcontrib><creatorcontrib>Johnson, Stephen B</creatorcontrib><creatorcontrib>Lai, Albert M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Medical Informatics Association : JAMIA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shivade, Chaitanya</au><au>Raghavan, Preethi</au><au>Fosler-Lussier, Eric</au><au>Embi, Peter J</au><au>Elhadad, Noemie</au><au>Johnson, Stephen B</au><au>Lai, Albert M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review of approaches to identifying patient phenotype cohorts using electronic health records</atitle><jtitle>Journal of the American Medical Informatics Association : JAMIA</jtitle><addtitle>J Am Med Inform Assoc</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>21</volume><issue>2</issue><spage>221</spage><epage>230</epage><pages>221-230</pages><issn>1067-5027</issn><eissn>1527-974X</eissn><abstract>To summarize literature describing approaches aimed at automatically identifying patients with a common phenotype. We performed a review of studies describing systems or reporting techniques developed for identifying cohorts of patients with specific phenotypes. Every full text article published in (1) Journal of American Medical Informatics Association, (2) Journal of Biomedical Informatics, (3) Proceedings of the Annual American Medical Informatics Association Symposium, and (4) Proceedings of Clinical Research Informatics Conference within the past 3 years was assessed for inclusion in the review. Only articles using automated techniques were included. Ninety-seven articles met our inclusion criteria. Forty-six used natural language processing (NLP)-based techniques, 24 described rule-based systems, 41 used statistical analyses, data mining, or machine learning techniques, while 22 described hybrid systems. Nine articles described the architecture of large-scale systems developed for determining cohort eligibility of patients. We observe that there is a rise in the number of studies associated with cohort identification using electronic medical records. Statistical analyses or machine learning, followed by NLP techniques, are gaining popularity over the years in comparison with rule-based systems. There are a variety of approaches for classifying patients into a particular phenotype. Different techniques and data sources are used, and good performance is reported on datasets at respective institutions. However, no system makes comprehensive use of electronic medical records addressing all of their known weaknesses.</abstract><cop>England</cop><pub>BMJ Publishing Group</pub><pmid>24201027</pmid><doi>10.1136/amiajnl-2013-001935</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1067-5027
ispartof Journal of the American Medical Informatics Association : JAMIA, 2014-03, Vol.21 (2), p.221-230
issn 1067-5027
1527-974X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3932460
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Artificial Intelligence
Data Mining - methods
Diagnosis
Electronic Health Records
Humans
Natural Language Processing
Phenotype
Review
Statistics as Topic
Vocabulary, Controlled
title A review of approaches to identifying patient phenotype cohorts using electronic health records
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A45%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20of%20approaches%20to%20identifying%20patient%20phenotype%20cohorts%20using%20electronic%20health%20records&rft.jtitle=Journal%20of%20the%20American%20Medical%20Informatics%20Association%20:%20JAMIA&rft.au=Shivade,%20Chaitanya&rft.date=2014-03-01&rft.volume=21&rft.issue=2&rft.spage=221&rft.epage=230&rft.pages=221-230&rft.issn=1067-5027&rft.eissn=1527-974X&rft_id=info:doi/10.1136/amiajnl-2013-001935&rft_dat=%3Cproquest_pubme%3E1499133143%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499133143&rft_id=info:pmid/24201027&rfr_iscdi=true