A review of approaches to identifying patient phenotype cohorts using electronic health records
To summarize literature describing approaches aimed at automatically identifying patients with a common phenotype. We performed a review of studies describing systems or reporting techniques developed for identifying cohorts of patients with specific phenotypes. Every full text article published in...
Gespeichert in:
Veröffentlicht in: | Journal of the American Medical Informatics Association : JAMIA 2014-03, Vol.21 (2), p.221-230 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 230 |
---|---|
container_issue | 2 |
container_start_page | 221 |
container_title | Journal of the American Medical Informatics Association : JAMIA |
container_volume | 21 |
creator | Shivade, Chaitanya Raghavan, Preethi Fosler-Lussier, Eric Embi, Peter J Elhadad, Noemie Johnson, Stephen B Lai, Albert M |
description | To summarize literature describing approaches aimed at automatically identifying patients with a common phenotype.
We performed a review of studies describing systems or reporting techniques developed for identifying cohorts of patients with specific phenotypes. Every full text article published in (1) Journal of American Medical Informatics Association, (2) Journal of Biomedical Informatics, (3) Proceedings of the Annual American Medical Informatics Association Symposium, and (4) Proceedings of Clinical Research Informatics Conference within the past 3 years was assessed for inclusion in the review. Only articles using automated techniques were included.
Ninety-seven articles met our inclusion criteria. Forty-six used natural language processing (NLP)-based techniques, 24 described rule-based systems, 41 used statistical analyses, data mining, or machine learning techniques, while 22 described hybrid systems. Nine articles described the architecture of large-scale systems developed for determining cohort eligibility of patients.
We observe that there is a rise in the number of studies associated with cohort identification using electronic medical records. Statistical analyses or machine learning, followed by NLP techniques, are gaining popularity over the years in comparison with rule-based systems.
There are a variety of approaches for classifying patients into a particular phenotype. Different techniques and data sources are used, and good performance is reported on datasets at respective institutions. However, no system makes comprehensive use of electronic medical records addressing all of their known weaknesses. |
doi_str_mv | 10.1136/amiajnl-2013-001935 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3932460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1499133143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-38996f8a76bb18bf9948cadbd9deb0dee3d5596dce41b362ab9962034ade7de43</originalsourceid><addsrcrecordid>eNpVkVtLwzAYhoMobh5-gSC59KaaNGm73AhjeIKBNwrehTT5ajO6pibZZP_ejM2hVzl8z_sm8CB0Rcktpay8U0urFn2X5YSyjBAqWHGExrTIq0xU_OM47UlZZQXJqxE6C2GRmDJnxSka5TyF0v0YySn2sLbwjV2D1TB4p3QLAUeHrYE-2mZj-088qGjTCQ8t9C5uBsDatc7HgFdhO4cOdPSutxq3oLrYplbtvAkX6KRRXYDL_XqO3h8f3mbP2fz16WU2nWeaVzRmbCJE2UxUVdY1ndSNEHyilamNMFATA8BMUYjSaOC0ZmWu6sTnhHFloDLA2Tm63_UOq3oJieujV50cvF0qv5FOWfl_0ttWfrq1ZILlvCSp4GZf4N3XCkKUSxs0dJ3qwa2CpFwIyhjlLKFsh2rvQvDQHJ6hRG7VyL0auVUjd2pS6vrvDw-ZXxfsB3xkj_4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499133143</pqid></control><display><type>article</type><title>A review of approaches to identifying patient phenotype cohorts using electronic health records</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Shivade, Chaitanya ; Raghavan, Preethi ; Fosler-Lussier, Eric ; Embi, Peter J ; Elhadad, Noemie ; Johnson, Stephen B ; Lai, Albert M</creator><creatorcontrib>Shivade, Chaitanya ; Raghavan, Preethi ; Fosler-Lussier, Eric ; Embi, Peter J ; Elhadad, Noemie ; Johnson, Stephen B ; Lai, Albert M</creatorcontrib><description>To summarize literature describing approaches aimed at automatically identifying patients with a common phenotype.
We performed a review of studies describing systems or reporting techniques developed for identifying cohorts of patients with specific phenotypes. Every full text article published in (1) Journal of American Medical Informatics Association, (2) Journal of Biomedical Informatics, (3) Proceedings of the Annual American Medical Informatics Association Symposium, and (4) Proceedings of Clinical Research Informatics Conference within the past 3 years was assessed for inclusion in the review. Only articles using automated techniques were included.
Ninety-seven articles met our inclusion criteria. Forty-six used natural language processing (NLP)-based techniques, 24 described rule-based systems, 41 used statistical analyses, data mining, or machine learning techniques, while 22 described hybrid systems. Nine articles described the architecture of large-scale systems developed for determining cohort eligibility of patients.
We observe that there is a rise in the number of studies associated with cohort identification using electronic medical records. Statistical analyses or machine learning, followed by NLP techniques, are gaining popularity over the years in comparison with rule-based systems.
There are a variety of approaches for classifying patients into a particular phenotype. Different techniques and data sources are used, and good performance is reported on datasets at respective institutions. However, no system makes comprehensive use of electronic medical records addressing all of their known weaknesses.</description><identifier>ISSN: 1067-5027</identifier><identifier>EISSN: 1527-974X</identifier><identifier>DOI: 10.1136/amiajnl-2013-001935</identifier><identifier>PMID: 24201027</identifier><language>eng</language><publisher>England: BMJ Publishing Group</publisher><subject>Artificial Intelligence ; Data Mining - methods ; Diagnosis ; Electronic Health Records ; Humans ; Natural Language Processing ; Phenotype ; Review ; Statistics as Topic ; Vocabulary, Controlled</subject><ispartof>Journal of the American Medical Informatics Association : JAMIA, 2014-03, Vol.21 (2), p.221-230</ispartof><rights>Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-38996f8a76bb18bf9948cadbd9deb0dee3d5596dce41b362ab9962034ade7de43</citedby><cites>FETCH-LOGICAL-c471t-38996f8a76bb18bf9948cadbd9deb0dee3d5596dce41b362ab9962034ade7de43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932460/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932460/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24201027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shivade, Chaitanya</creatorcontrib><creatorcontrib>Raghavan, Preethi</creatorcontrib><creatorcontrib>Fosler-Lussier, Eric</creatorcontrib><creatorcontrib>Embi, Peter J</creatorcontrib><creatorcontrib>Elhadad, Noemie</creatorcontrib><creatorcontrib>Johnson, Stephen B</creatorcontrib><creatorcontrib>Lai, Albert M</creatorcontrib><title>A review of approaches to identifying patient phenotype cohorts using electronic health records</title><title>Journal of the American Medical Informatics Association : JAMIA</title><addtitle>J Am Med Inform Assoc</addtitle><description>To summarize literature describing approaches aimed at automatically identifying patients with a common phenotype.
We performed a review of studies describing systems or reporting techniques developed for identifying cohorts of patients with specific phenotypes. Every full text article published in (1) Journal of American Medical Informatics Association, (2) Journal of Biomedical Informatics, (3) Proceedings of the Annual American Medical Informatics Association Symposium, and (4) Proceedings of Clinical Research Informatics Conference within the past 3 years was assessed for inclusion in the review. Only articles using automated techniques were included.
Ninety-seven articles met our inclusion criteria. Forty-six used natural language processing (NLP)-based techniques, 24 described rule-based systems, 41 used statistical analyses, data mining, or machine learning techniques, while 22 described hybrid systems. Nine articles described the architecture of large-scale systems developed for determining cohort eligibility of patients.
We observe that there is a rise in the number of studies associated with cohort identification using electronic medical records. Statistical analyses or machine learning, followed by NLP techniques, are gaining popularity over the years in comparison with rule-based systems.
There are a variety of approaches for classifying patients into a particular phenotype. Different techniques and data sources are used, and good performance is reported on datasets at respective institutions. However, no system makes comprehensive use of electronic medical records addressing all of their known weaknesses.</description><subject>Artificial Intelligence</subject><subject>Data Mining - methods</subject><subject>Diagnosis</subject><subject>Electronic Health Records</subject><subject>Humans</subject><subject>Natural Language Processing</subject><subject>Phenotype</subject><subject>Review</subject><subject>Statistics as Topic</subject><subject>Vocabulary, Controlled</subject><issn>1067-5027</issn><issn>1527-974X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkVtLwzAYhoMobh5-gSC59KaaNGm73AhjeIKBNwrehTT5ajO6pibZZP_ejM2hVzl8z_sm8CB0Rcktpay8U0urFn2X5YSyjBAqWHGExrTIq0xU_OM47UlZZQXJqxE6C2GRmDJnxSka5TyF0v0YySn2sLbwjV2D1TB4p3QLAUeHrYE-2mZj-088qGjTCQ8t9C5uBsDatc7HgFdhO4cOdPSutxq3oLrYplbtvAkX6KRRXYDL_XqO3h8f3mbP2fz16WU2nWeaVzRmbCJE2UxUVdY1ndSNEHyilamNMFATA8BMUYjSaOC0ZmWu6sTnhHFloDLA2Tm63_UOq3oJieujV50cvF0qv5FOWfl_0ttWfrq1ZILlvCSp4GZf4N3XCkKUSxs0dJ3qwa2CpFwIyhjlLKFsh2rvQvDQHJ6hRG7VyL0auVUjd2pS6vrvDw-ZXxfsB3xkj_4</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Shivade, Chaitanya</creator><creator>Raghavan, Preethi</creator><creator>Fosler-Lussier, Eric</creator><creator>Embi, Peter J</creator><creator>Elhadad, Noemie</creator><creator>Johnson, Stephen B</creator><creator>Lai, Albert M</creator><general>BMJ Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140301</creationdate><title>A review of approaches to identifying patient phenotype cohorts using electronic health records</title><author>Shivade, Chaitanya ; Raghavan, Preethi ; Fosler-Lussier, Eric ; Embi, Peter J ; Elhadad, Noemie ; Johnson, Stephen B ; Lai, Albert M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-38996f8a76bb18bf9948cadbd9deb0dee3d5596dce41b362ab9962034ade7de43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial Intelligence</topic><topic>Data Mining - methods</topic><topic>Diagnosis</topic><topic>Electronic Health Records</topic><topic>Humans</topic><topic>Natural Language Processing</topic><topic>Phenotype</topic><topic>Review</topic><topic>Statistics as Topic</topic><topic>Vocabulary, Controlled</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shivade, Chaitanya</creatorcontrib><creatorcontrib>Raghavan, Preethi</creatorcontrib><creatorcontrib>Fosler-Lussier, Eric</creatorcontrib><creatorcontrib>Embi, Peter J</creatorcontrib><creatorcontrib>Elhadad, Noemie</creatorcontrib><creatorcontrib>Johnson, Stephen B</creatorcontrib><creatorcontrib>Lai, Albert M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Medical Informatics Association : JAMIA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shivade, Chaitanya</au><au>Raghavan, Preethi</au><au>Fosler-Lussier, Eric</au><au>Embi, Peter J</au><au>Elhadad, Noemie</au><au>Johnson, Stephen B</au><au>Lai, Albert M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review of approaches to identifying patient phenotype cohorts using electronic health records</atitle><jtitle>Journal of the American Medical Informatics Association : JAMIA</jtitle><addtitle>J Am Med Inform Assoc</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>21</volume><issue>2</issue><spage>221</spage><epage>230</epage><pages>221-230</pages><issn>1067-5027</issn><eissn>1527-974X</eissn><abstract>To summarize literature describing approaches aimed at automatically identifying patients with a common phenotype.
We performed a review of studies describing systems or reporting techniques developed for identifying cohorts of patients with specific phenotypes. Every full text article published in (1) Journal of American Medical Informatics Association, (2) Journal of Biomedical Informatics, (3) Proceedings of the Annual American Medical Informatics Association Symposium, and (4) Proceedings of Clinical Research Informatics Conference within the past 3 years was assessed for inclusion in the review. Only articles using automated techniques were included.
Ninety-seven articles met our inclusion criteria. Forty-six used natural language processing (NLP)-based techniques, 24 described rule-based systems, 41 used statistical analyses, data mining, or machine learning techniques, while 22 described hybrid systems. Nine articles described the architecture of large-scale systems developed for determining cohort eligibility of patients.
We observe that there is a rise in the number of studies associated with cohort identification using electronic medical records. Statistical analyses or machine learning, followed by NLP techniques, are gaining popularity over the years in comparison with rule-based systems.
There are a variety of approaches for classifying patients into a particular phenotype. Different techniques and data sources are used, and good performance is reported on datasets at respective institutions. However, no system makes comprehensive use of electronic medical records addressing all of their known weaknesses.</abstract><cop>England</cop><pub>BMJ Publishing Group</pub><pmid>24201027</pmid><doi>10.1136/amiajnl-2013-001935</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1067-5027 |
ispartof | Journal of the American Medical Informatics Association : JAMIA, 2014-03, Vol.21 (2), p.221-230 |
issn | 1067-5027 1527-974X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3932460 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Artificial Intelligence Data Mining - methods Diagnosis Electronic Health Records Humans Natural Language Processing Phenotype Review Statistics as Topic Vocabulary, Controlled |
title | A review of approaches to identifying patient phenotype cohorts using electronic health records |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A45%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20of%20approaches%20to%20identifying%20patient%20phenotype%20cohorts%20using%20electronic%20health%20records&rft.jtitle=Journal%20of%20the%20American%20Medical%20Informatics%20Association%20:%20JAMIA&rft.au=Shivade,%20Chaitanya&rft.date=2014-03-01&rft.volume=21&rft.issue=2&rft.spage=221&rft.epage=230&rft.pages=221-230&rft.issn=1067-5027&rft.eissn=1527-974X&rft_id=info:doi/10.1136/amiajnl-2013-001935&rft_dat=%3Cproquest_pubme%3E1499133143%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499133143&rft_id=info:pmid/24201027&rfr_iscdi=true |