The Hypertrophic Cardiomyopathy Myosin Mutation R453C Alters ATP Binding and Hydrolysis of Human Cardiac β-Myosin

The human hypertrophic cardiomyopathy mutation R453C results in one of the more severe forms of the myopathy. Arg-453 is found in a conserved surface loop of the upper 50-kDa domain of the myosin motor domain and lies between the nucleotide binding pocket and the actin binding site. It connects to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2014-02, Vol.289 (8), p.5158-5167
Hauptverfasser: Bloemink, Marieke, Deacon, John, Langer, Stephen, Vera, Carlos, Combs, Ariana, Leinwand, Leslie, Geeves, Michael A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5167
container_issue 8
container_start_page 5158
container_title The Journal of biological chemistry
container_volume 289
creator Bloemink, Marieke
Deacon, John
Langer, Stephen
Vera, Carlos
Combs, Ariana
Leinwand, Leslie
Geeves, Michael A.
description The human hypertrophic cardiomyopathy mutation R453C results in one of the more severe forms of the myopathy. Arg-453 is found in a conserved surface loop of the upper 50-kDa domain of the myosin motor domain and lies between the nucleotide binding pocket and the actin binding site. It connects to the cardiomyopathy loop via a long α-helix, helix O, and to Switch-2 via the fifth strand of the central β-sheet. The mutation is, therefore, in a position to perturb a wide range of myosin molecular activities. We report here the first detailed biochemical kinetic analysis of the motor domain of the human β-cardiac myosin carrying the R453C mutation. A recent report of the same mutation (Sommese, R. F., Sung, J., Nag, S., Sutton, S., Deacon, J. C., Choe, E., Leinwand, L. A., Ruppel, K., and Spudich, J. A. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 12607–12612) found reduced ATPase and in vitro motility but increased force production using an optical trap. Surprisingly, our results show that the mutation alters few biochemical kinetic parameters significantly. The exceptions are the rate constants for ATP binding to the motor domain (reduced by 35%) and the ATP hydrolysis step/recovery stroke (slowed 3-fold), which could be the rate-limiting step for the ATPase cycle. Effects of the mutation on the recovery stroke are consistent with a perturbation of Switch-2 closure, which is required for the recovery stroke and the subsequent ATP hydrolysis. R453C is a mutation in human cardiac myosin and is associated with a high incidence of sudden cardiac death. R453C alters few kinetic parameters, except for the conformational changes associated with ATP binding and hydrolysis. The closure of switch-2 on ATP is disrupted by R453C. This is the first detailed kinetic analysis of the motor domain of the human β-cardiac myosin carrying the R453C mutation.
doi_str_mv 10.1074/jbc.M113.511204
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3931073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820441535</els_id><sourcerecordid>1512332672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-ecb0420cf282a7c40d8e83a2080f0006f5be56e8b1464cfc162c45eb8dc167d53</originalsourceid><addsrcrecordid>eNp1kc1u1DAURi0EokNhzQ55ySZT_yaZDdIwKgxSRyA0SOwsx77puErsYCeV8lo8SJ-prlIqWOCNLd3Px773IPSWkjUllbi4acz6QClfS0oZEc_QipKaF1zSn8_RihBGiw2T9Rl6ldINyUts6Et0xgQXgvJqheLxBHg_DxDHGIaTM3ino3Whn8Ogx9OMD3NIzuPDNOrRBY-_C8l3eNuNEBPeHr_hj85b56-x9jaDbAzdnFzCocX7qdd-4WmD734XC-s1etHqLsGbx_0c_fh0edzti6uvn7_stleFEVU5FmAaIhgxLauZrowgtoaaa0Zq0uZGylY2IEuoGypKYVpDS2aEhKa2-VhZyc_Rh4U7TE0P1oAfo-7UEF2v46yCdurfincndR1uFd_wPFyeAe8fATH8miCNqnfJQNdpD2FKikrKOGdlxXL0YomaGFKK0D49Q4l6MKWyKfVgSi2m8o13f__uKf9HTQ5slgDkGd06iCoZB96AdRHMqGxw_4XfA-0vpGY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512332672</pqid></control><display><type>article</type><title>The Hypertrophic Cardiomyopathy Myosin Mutation R453C Alters ATP Binding and Hydrolysis of Human Cardiac β-Myosin</title><source>MEDLINE</source><source>PMC (PubMed Central)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Bloemink, Marieke ; Deacon, John ; Langer, Stephen ; Vera, Carlos ; Combs, Ariana ; Leinwand, Leslie ; Geeves, Michael A.</creator><creatorcontrib>Bloemink, Marieke ; Deacon, John ; Langer, Stephen ; Vera, Carlos ; Combs, Ariana ; Leinwand, Leslie ; Geeves, Michael A.</creatorcontrib><description>The human hypertrophic cardiomyopathy mutation R453C results in one of the more severe forms of the myopathy. Arg-453 is found in a conserved surface loop of the upper 50-kDa domain of the myosin motor domain and lies between the nucleotide binding pocket and the actin binding site. It connects to the cardiomyopathy loop via a long α-helix, helix O, and to Switch-2 via the fifth strand of the central β-sheet. The mutation is, therefore, in a position to perturb a wide range of myosin molecular activities. We report here the first detailed biochemical kinetic analysis of the motor domain of the human β-cardiac myosin carrying the R453C mutation. A recent report of the same mutation (Sommese, R. F., Sung, J., Nag, S., Sutton, S., Deacon, J. C., Choe, E., Leinwand, L. A., Ruppel, K., and Spudich, J. A. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 12607–12612) found reduced ATPase and in vitro motility but increased force production using an optical trap. Surprisingly, our results show that the mutation alters few biochemical kinetic parameters significantly. The exceptions are the rate constants for ATP binding to the motor domain (reduced by 35%) and the ATP hydrolysis step/recovery stroke (slowed 3-fold), which could be the rate-limiting step for the ATPase cycle. Effects of the mutation on the recovery stroke are consistent with a perturbation of Switch-2 closure, which is required for the recovery stroke and the subsequent ATP hydrolysis. R453C is a mutation in human cardiac myosin and is associated with a high incidence of sudden cardiac death. R453C alters few kinetic parameters, except for the conformational changes associated with ATP binding and hydrolysis. The closure of switch-2 on ATP is disrupted by R453C. This is the first detailed kinetic analysis of the motor domain of the human β-cardiac myosin carrying the R453C mutation.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M113.511204</identifier><identifier>PMID: 24344137</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actin ; Actins - metabolism ; Adenosine Diphosphate - metabolism ; Adenosine Triphosphate - metabolism ; Amino Acid Substitution - genetics ; Cardiac Muscle ; Cardiac Myosins - chemistry ; Cardiac Myosins - genetics ; Cardiomyopathy ; Cardiomyopathy, Hypertrophic - genetics ; Crystallography, X-Ray ; Fluorescence ; Homology Models ; Humans ; Hydrolysis ; Kinetics ; Models, Molecular ; Molecular Bases of Disease ; Mutation - genetics ; Myosin ; Myosin Heavy Chains - chemistry ; Myosin Heavy Chains - genetics ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Structure-Function ; Sequence Alignment</subject><ispartof>The Journal of biological chemistry, 2014-02, Vol.289 (8), p.5158-5167</ispartof><rights>2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-ecb0420cf282a7c40d8e83a2080f0006f5be56e8b1464cfc162c45eb8dc167d53</citedby><cites>FETCH-LOGICAL-c476t-ecb0420cf282a7c40d8e83a2080f0006f5be56e8b1464cfc162c45eb8dc167d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931073/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931073/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24344137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bloemink, Marieke</creatorcontrib><creatorcontrib>Deacon, John</creatorcontrib><creatorcontrib>Langer, Stephen</creatorcontrib><creatorcontrib>Vera, Carlos</creatorcontrib><creatorcontrib>Combs, Ariana</creatorcontrib><creatorcontrib>Leinwand, Leslie</creatorcontrib><creatorcontrib>Geeves, Michael A.</creatorcontrib><title>The Hypertrophic Cardiomyopathy Myosin Mutation R453C Alters ATP Binding and Hydrolysis of Human Cardiac β-Myosin</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The human hypertrophic cardiomyopathy mutation R453C results in one of the more severe forms of the myopathy. Arg-453 is found in a conserved surface loop of the upper 50-kDa domain of the myosin motor domain and lies between the nucleotide binding pocket and the actin binding site. It connects to the cardiomyopathy loop via a long α-helix, helix O, and to Switch-2 via the fifth strand of the central β-sheet. The mutation is, therefore, in a position to perturb a wide range of myosin molecular activities. We report here the first detailed biochemical kinetic analysis of the motor domain of the human β-cardiac myosin carrying the R453C mutation. A recent report of the same mutation (Sommese, R. F., Sung, J., Nag, S., Sutton, S., Deacon, J. C., Choe, E., Leinwand, L. A., Ruppel, K., and Spudich, J. A. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 12607–12612) found reduced ATPase and in vitro motility but increased force production using an optical trap. Surprisingly, our results show that the mutation alters few biochemical kinetic parameters significantly. The exceptions are the rate constants for ATP binding to the motor domain (reduced by 35%) and the ATP hydrolysis step/recovery stroke (slowed 3-fold), which could be the rate-limiting step for the ATPase cycle. Effects of the mutation on the recovery stroke are consistent with a perturbation of Switch-2 closure, which is required for the recovery stroke and the subsequent ATP hydrolysis. R453C is a mutation in human cardiac myosin and is associated with a high incidence of sudden cardiac death. R453C alters few kinetic parameters, except for the conformational changes associated with ATP binding and hydrolysis. The closure of switch-2 on ATP is disrupted by R453C. This is the first detailed kinetic analysis of the motor domain of the human β-cardiac myosin carrying the R453C mutation.</description><subject>Actin</subject><subject>Actins - metabolism</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Amino Acid Substitution - genetics</subject><subject>Cardiac Muscle</subject><subject>Cardiac Myosins - chemistry</subject><subject>Cardiac Myosins - genetics</subject><subject>Cardiomyopathy</subject><subject>Cardiomyopathy, Hypertrophic - genetics</subject><subject>Crystallography, X-Ray</subject><subject>Fluorescence</subject><subject>Homology Models</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Molecular Bases of Disease</subject><subject>Mutation - genetics</subject><subject>Myosin</subject><subject>Myosin Heavy Chains - chemistry</subject><subject>Myosin Heavy Chains - genetics</subject><subject>Protein Binding</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Structure-Function</subject><subject>Sequence Alignment</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAURi0EokNhzQ55ySZT_yaZDdIwKgxSRyA0SOwsx77puErsYCeV8lo8SJ-prlIqWOCNLd3Px773IPSWkjUllbi4acz6QClfS0oZEc_QipKaF1zSn8_RihBGiw2T9Rl6ldINyUts6Et0xgQXgvJqheLxBHg_DxDHGIaTM3ino3Whn8Ogx9OMD3NIzuPDNOrRBY-_C8l3eNuNEBPeHr_hj85b56-x9jaDbAzdnFzCocX7qdd-4WmD734XC-s1etHqLsGbx_0c_fh0edzti6uvn7_stleFEVU5FmAaIhgxLauZrowgtoaaa0Zq0uZGylY2IEuoGypKYVpDS2aEhKa2-VhZyc_Rh4U7TE0P1oAfo-7UEF2v46yCdurfincndR1uFd_wPFyeAe8fATH8miCNqnfJQNdpD2FKikrKOGdlxXL0YomaGFKK0D49Q4l6MKWyKfVgSi2m8o13f__uKf9HTQ5slgDkGd06iCoZB96AdRHMqGxw_4XfA-0vpGY</recordid><startdate>20140221</startdate><enddate>20140221</enddate><creator>Bloemink, Marieke</creator><creator>Deacon, John</creator><creator>Langer, Stephen</creator><creator>Vera, Carlos</creator><creator>Combs, Ariana</creator><creator>Leinwand, Leslie</creator><creator>Geeves, Michael A.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20140221</creationdate><title>The Hypertrophic Cardiomyopathy Myosin Mutation R453C Alters ATP Binding and Hydrolysis of Human Cardiac β-Myosin</title><author>Bloemink, Marieke ; Deacon, John ; Langer, Stephen ; Vera, Carlos ; Combs, Ariana ; Leinwand, Leslie ; Geeves, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-ecb0420cf282a7c40d8e83a2080f0006f5be56e8b1464cfc162c45eb8dc167d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actin</topic><topic>Actins - metabolism</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Amino Acid Substitution - genetics</topic><topic>Cardiac Muscle</topic><topic>Cardiac Myosins - chemistry</topic><topic>Cardiac Myosins - genetics</topic><topic>Cardiomyopathy</topic><topic>Cardiomyopathy, Hypertrophic - genetics</topic><topic>Crystallography, X-Ray</topic><topic>Fluorescence</topic><topic>Homology Models</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Molecular Bases of Disease</topic><topic>Mutation - genetics</topic><topic>Myosin</topic><topic>Myosin Heavy Chains - chemistry</topic><topic>Myosin Heavy Chains - genetics</topic><topic>Protein Binding</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Structure-Function</topic><topic>Sequence Alignment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bloemink, Marieke</creatorcontrib><creatorcontrib>Deacon, John</creatorcontrib><creatorcontrib>Langer, Stephen</creatorcontrib><creatorcontrib>Vera, Carlos</creatorcontrib><creatorcontrib>Combs, Ariana</creatorcontrib><creatorcontrib>Leinwand, Leslie</creatorcontrib><creatorcontrib>Geeves, Michael A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bloemink, Marieke</au><au>Deacon, John</au><au>Langer, Stephen</au><au>Vera, Carlos</au><au>Combs, Ariana</au><au>Leinwand, Leslie</au><au>Geeves, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hypertrophic Cardiomyopathy Myosin Mutation R453C Alters ATP Binding and Hydrolysis of Human Cardiac β-Myosin</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2014-02-21</date><risdate>2014</risdate><volume>289</volume><issue>8</issue><spage>5158</spage><epage>5167</epage><pages>5158-5167</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The human hypertrophic cardiomyopathy mutation R453C results in one of the more severe forms of the myopathy. Arg-453 is found in a conserved surface loop of the upper 50-kDa domain of the myosin motor domain and lies between the nucleotide binding pocket and the actin binding site. It connects to the cardiomyopathy loop via a long α-helix, helix O, and to Switch-2 via the fifth strand of the central β-sheet. The mutation is, therefore, in a position to perturb a wide range of myosin molecular activities. We report here the first detailed biochemical kinetic analysis of the motor domain of the human β-cardiac myosin carrying the R453C mutation. A recent report of the same mutation (Sommese, R. F., Sung, J., Nag, S., Sutton, S., Deacon, J. C., Choe, E., Leinwand, L. A., Ruppel, K., and Spudich, J. A. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 12607–12612) found reduced ATPase and in vitro motility but increased force production using an optical trap. Surprisingly, our results show that the mutation alters few biochemical kinetic parameters significantly. The exceptions are the rate constants for ATP binding to the motor domain (reduced by 35%) and the ATP hydrolysis step/recovery stroke (slowed 3-fold), which could be the rate-limiting step for the ATPase cycle. Effects of the mutation on the recovery stroke are consistent with a perturbation of Switch-2 closure, which is required for the recovery stroke and the subsequent ATP hydrolysis. R453C is a mutation in human cardiac myosin and is associated with a high incidence of sudden cardiac death. R453C alters few kinetic parameters, except for the conformational changes associated with ATP binding and hydrolysis. The closure of switch-2 on ATP is disrupted by R453C. This is the first detailed kinetic analysis of the motor domain of the human β-cardiac myosin carrying the R453C mutation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24344137</pmid><doi>10.1074/jbc.M113.511204</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2014-02, Vol.289 (8), p.5158-5167
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3931073
source MEDLINE; PMC (PubMed Central); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Actin
Actins - metabolism
Adenosine Diphosphate - metabolism
Adenosine Triphosphate - metabolism
Amino Acid Substitution - genetics
Cardiac Muscle
Cardiac Myosins - chemistry
Cardiac Myosins - genetics
Cardiomyopathy
Cardiomyopathy, Hypertrophic - genetics
Crystallography, X-Ray
Fluorescence
Homology Models
Humans
Hydrolysis
Kinetics
Models, Molecular
Molecular Bases of Disease
Mutation - genetics
Myosin
Myosin Heavy Chains - chemistry
Myosin Heavy Chains - genetics
Protein Binding
Protein Structure, Secondary
Protein Structure, Tertiary
Protein Structure-Function
Sequence Alignment
title The Hypertrophic Cardiomyopathy Myosin Mutation R453C Alters ATP Binding and Hydrolysis of Human Cardiac β-Myosin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A34%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hypertrophic%20Cardiomyopathy%20Myosin%20Mutation%20R453C%20Alters%20ATP%20Binding%20and%20Hydrolysis%20of%20Human%20Cardiac%20%CE%B2-Myosin&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Bloemink,%20Marieke&rft.date=2014-02-21&rft.volume=289&rft.issue=8&rft.spage=5158&rft.epage=5167&rft.pages=5158-5167&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M113.511204&rft_dat=%3Cproquest_pubme%3E1512332672%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512332672&rft_id=info:pmid/24344137&rft_els_id=S0021925820441535&rfr_iscdi=true