Toward Biocompatible Nuclear Hyperpolarization Using Signal Amplification by Reversible Exchange: Quantitative in Situ Spectroscopy and High-Field Imaging
Signal amplification by reversible exchange (SABRE) of a substrate and parahydrogen at a catalytic center promises to overcome the inherent insensitivity of magnetic resonance. In order to apply the new approach to biomedical applications, there is a need to develop experimental equipment, in situ q...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2014-02, Vol.86 (3), p.1767-1774 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1774 |
---|---|
container_issue | 3 |
container_start_page | 1767 |
container_title | Analytical chemistry (Washington) |
container_volume | 86 |
creator | Hövener, Jan-Bernd Schwaderlapp, Niels Borowiak, Robert Lickert, Thomas Duckett, Simon B Mewis, Ryan E Adams, Ralph W Burns, Michael J Highton, Louise A. R Green, Gary G. R Olaru, Alexandra Hennig, Jürgen von Elverfeldt, Dominik |
description | Signal amplification by reversible exchange (SABRE) of a substrate and parahydrogen at a catalytic center promises to overcome the inherent insensitivity of magnetic resonance. In order to apply the new approach to biomedical applications, there is a need to develop experimental equipment, in situ quantification methods, and a biocompatible solvent. We present results detailing a low-field SABRE polarizer which provides well-controlled experimental conditions, defined spins manipulations, and which allows in situ detection of thermally polarized and hyperpolarized samples. We introduce a method for absolute quantification of hyperpolarization yield in situ by means of a thermally polarized reference. A maximum signal-to-noise ratio of ∼103 for 148 μmol of substance, a signal enhancement of 106 with respect to polarization transfer field of SABRE, or an absolute 1H-polarization level of ≈10–2 is achieved. In an important step toward biomedical application, we demonstrate 1H in situ NMR as well as 1H and 13C high-field MRI using hyperpolarized pyridine (d 3) and 13C nicotinamide in pure and 11% ethanol in aqueous solution. Further increase of hyperpolarization yield, implications of in situ detection, and in vivo application are discussed. |
doi_str_mv | 10.1021/ac403653q |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3929132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1499123655</sourcerecordid><originalsourceid>FETCH-LOGICAL-a565t-72510812e0cb44afc64964f49ed953750bffe201fa9e0ca76288f00b17befbde3</originalsourceid><addsrcrecordid>eNqFkkFv1DAQhS0EoqVw4A8gSwgJDoGxYycxB6RStWylCgRtz5HjTLKukji1k4Xlp_Br8XbLqsChJx_eN2_keY-Q5wzeMuDsnTYC0kym1w_IPpMckqwo-EOyDwBpwnOAPfIkhCsAxoBlj8keF6nKpVT75NeF-659TT9aZ1w_6slWHdLPs-lQe7pYj-hH12lvf0bJDfQy2KGl57YddEcP-7GzjTVbqVrTb7hCH24sjn-YpR5afE-_znqY7BShFVI7xOFppucjmsm7YNy4pnqo6cK2y-TEYlfT0163cctT8qjRXcBnt-8BuTw5vjhaJGdfPp0eHZ4lWmZySnIuGRSMI5hKCN2YTKhMNEJhrWSaS6iaBjmwRquI6DzjRdEAVCyvsKlqTA_Ih63vOFc91gaHyeuuHL3ttV-XTtvyb2Wwy7J1qzJVXLGUR4PXtwbeXc8YprK3wWDX6QHdHEq-yYGLIhX3oixTXIAQBdyPCqUYj7HLiL78B71ys48J3VBZXnAuN4ZvtpSJdw8em90XGZSbHpW7HkX2xd2b7Mg_xYnAqy2gTbiz7T-j384f0XU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1496782250</pqid></control><display><type>article</type><title>Toward Biocompatible Nuclear Hyperpolarization Using Signal Amplification by Reversible Exchange: Quantitative in Situ Spectroscopy and High-Field Imaging</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Hövener, Jan-Bernd ; Schwaderlapp, Niels ; Borowiak, Robert ; Lickert, Thomas ; Duckett, Simon B ; Mewis, Ryan E ; Adams, Ralph W ; Burns, Michael J ; Highton, Louise A. R ; Green, Gary G. R ; Olaru, Alexandra ; Hennig, Jürgen ; von Elverfeldt, Dominik</creator><creatorcontrib>Hövener, Jan-Bernd ; Schwaderlapp, Niels ; Borowiak, Robert ; Lickert, Thomas ; Duckett, Simon B ; Mewis, Ryan E ; Adams, Ralph W ; Burns, Michael J ; Highton, Louise A. R ; Green, Gary G. R ; Olaru, Alexandra ; Hennig, Jürgen ; von Elverfeldt, Dominik</creatorcontrib><description>Signal amplification by reversible exchange (SABRE) of a substrate and parahydrogen at a catalytic center promises to overcome the inherent insensitivity of magnetic resonance. In order to apply the new approach to biomedical applications, there is a need to develop experimental equipment, in situ quantification methods, and a biocompatible solvent. We present results detailing a low-field SABRE polarizer which provides well-controlled experimental conditions, defined spins manipulations, and which allows in situ detection of thermally polarized and hyperpolarized samples. We introduce a method for absolute quantification of hyperpolarization yield in situ by means of a thermally polarized reference. A maximum signal-to-noise ratio of ∼103 for 148 μmol of substance, a signal enhancement of 106 with respect to polarization transfer field of SABRE, or an absolute 1H-polarization level of ≈10–2 is achieved. In an important step toward biomedical application, we demonstrate 1H in situ NMR as well as 1H and 13C high-field MRI using hyperpolarized pyridine (d 3) and 13C nicotinamide in pure and 11% ethanol in aqueous solution. Further increase of hyperpolarization yield, implications of in situ detection, and in vivo application are discussed.</description><identifier>ISSN: 0003-2700</identifier><identifier>ISSN: 1520-6882</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac403653q</identifier><identifier>PMID: 24397559</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amplification ; Analytical chemistry ; Aqueous solutions ; Biochemistry ; Biocompatibility ; Biomedical materials ; ethanol ; Ethanol - chemistry ; Ethyl alcohol ; Exchange ; image analysis ; Isomerism ; Magnetic resonance ; magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Spectroscopy - methods ; Materials Testing ; Methanol - chemistry ; Models, Molecular ; Molecular Conformation ; nicotinamide ; nuclear magnetic resonance spectroscopy ; Pyridines ; research equipment ; Signal to noise ratio ; Solvents ; Solvents - chemistry ; Symbols ; Water - chemistry</subject><ispartof>Analytical chemistry (Washington), 2014-02, Vol.86 (3), p.1767-1774</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 4, 2014</rights><rights>Copyright © 2014 American Chemical Society 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a565t-72510812e0cb44afc64964f49ed953750bffe201fa9e0ca76288f00b17befbde3</citedby><cites>FETCH-LOGICAL-a565t-72510812e0cb44afc64964f49ed953750bffe201fa9e0ca76288f00b17befbde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac403653q$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac403653q$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24397559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hövener, Jan-Bernd</creatorcontrib><creatorcontrib>Schwaderlapp, Niels</creatorcontrib><creatorcontrib>Borowiak, Robert</creatorcontrib><creatorcontrib>Lickert, Thomas</creatorcontrib><creatorcontrib>Duckett, Simon B</creatorcontrib><creatorcontrib>Mewis, Ryan E</creatorcontrib><creatorcontrib>Adams, Ralph W</creatorcontrib><creatorcontrib>Burns, Michael J</creatorcontrib><creatorcontrib>Highton, Louise A. R</creatorcontrib><creatorcontrib>Green, Gary G. R</creatorcontrib><creatorcontrib>Olaru, Alexandra</creatorcontrib><creatorcontrib>Hennig, Jürgen</creatorcontrib><creatorcontrib>von Elverfeldt, Dominik</creatorcontrib><title>Toward Biocompatible Nuclear Hyperpolarization Using Signal Amplification by Reversible Exchange: Quantitative in Situ Spectroscopy and High-Field Imaging</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Signal amplification by reversible exchange (SABRE) of a substrate and parahydrogen at a catalytic center promises to overcome the inherent insensitivity of magnetic resonance. In order to apply the new approach to biomedical applications, there is a need to develop experimental equipment, in situ quantification methods, and a biocompatible solvent. We present results detailing a low-field SABRE polarizer which provides well-controlled experimental conditions, defined spins manipulations, and which allows in situ detection of thermally polarized and hyperpolarized samples. We introduce a method for absolute quantification of hyperpolarization yield in situ by means of a thermally polarized reference. A maximum signal-to-noise ratio of ∼103 for 148 μmol of substance, a signal enhancement of 106 with respect to polarization transfer field of SABRE, or an absolute 1H-polarization level of ≈10–2 is achieved. In an important step toward biomedical application, we demonstrate 1H in situ NMR as well as 1H and 13C high-field MRI using hyperpolarized pyridine (d 3) and 13C nicotinamide in pure and 11% ethanol in aqueous solution. Further increase of hyperpolarization yield, implications of in situ detection, and in vivo application are discussed.</description><subject>Amplification</subject><subject>Analytical chemistry</subject><subject>Aqueous solutions</subject><subject>Biochemistry</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>ethanol</subject><subject>Ethanol - chemistry</subject><subject>Ethyl alcohol</subject><subject>Exchange</subject><subject>image analysis</subject><subject>Isomerism</subject><subject>Magnetic resonance</subject><subject>magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Materials Testing</subject><subject>Methanol - chemistry</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>nicotinamide</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>Pyridines</subject><subject>research equipment</subject><subject>Signal to noise ratio</subject><subject>Solvents</subject><subject>Solvents - chemistry</subject><subject>Symbols</subject><subject>Water - chemistry</subject><issn>0003-2700</issn><issn>1520-6882</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNqFkkFv1DAQhS0EoqVw4A8gSwgJDoGxYycxB6RStWylCgRtz5HjTLKukji1k4Xlp_Br8XbLqsChJx_eN2_keY-Q5wzeMuDsnTYC0kym1w_IPpMckqwo-EOyDwBpwnOAPfIkhCsAxoBlj8keF6nKpVT75NeF-659TT9aZ1w_6slWHdLPs-lQe7pYj-hH12lvf0bJDfQy2KGl57YddEcP-7GzjTVbqVrTb7hCH24sjn-YpR5afE-_znqY7BShFVI7xOFppucjmsm7YNy4pnqo6cK2y-TEYlfT0163cctT8qjRXcBnt-8BuTw5vjhaJGdfPp0eHZ4lWmZySnIuGRSMI5hKCN2YTKhMNEJhrWSaS6iaBjmwRquI6DzjRdEAVCyvsKlqTA_Ih63vOFc91gaHyeuuHL3ttV-XTtvyb2Wwy7J1qzJVXLGUR4PXtwbeXc8YprK3wWDX6QHdHEq-yYGLIhX3oixTXIAQBdyPCqUYj7HLiL78B71ys48J3VBZXnAuN4ZvtpSJdw8em90XGZSbHpW7HkX2xd2b7Mg_xYnAqy2gTbiz7T-j384f0XU</recordid><startdate>20140204</startdate><enddate>20140204</enddate><creator>Hövener, Jan-Bernd</creator><creator>Schwaderlapp, Niels</creator><creator>Borowiak, Robert</creator><creator>Lickert, Thomas</creator><creator>Duckett, Simon B</creator><creator>Mewis, Ryan E</creator><creator>Adams, Ralph W</creator><creator>Burns, Michael J</creator><creator>Highton, Louise A. R</creator><creator>Green, Gary G. R</creator><creator>Olaru, Alexandra</creator><creator>Hennig, Jürgen</creator><creator>von Elverfeldt, Dominik</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140204</creationdate><title>Toward Biocompatible Nuclear Hyperpolarization Using Signal Amplification by Reversible Exchange: Quantitative in Situ Spectroscopy and High-Field Imaging</title><author>Hövener, Jan-Bernd ; Schwaderlapp, Niels ; Borowiak, Robert ; Lickert, Thomas ; Duckett, Simon B ; Mewis, Ryan E ; Adams, Ralph W ; Burns, Michael J ; Highton, Louise A. R ; Green, Gary G. R ; Olaru, Alexandra ; Hennig, Jürgen ; von Elverfeldt, Dominik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a565t-72510812e0cb44afc64964f49ed953750bffe201fa9e0ca76288f00b17befbde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amplification</topic><topic>Analytical chemistry</topic><topic>Aqueous solutions</topic><topic>Biochemistry</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>ethanol</topic><topic>Ethanol - chemistry</topic><topic>Ethyl alcohol</topic><topic>Exchange</topic><topic>image analysis</topic><topic>Isomerism</topic><topic>Magnetic resonance</topic><topic>magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Materials Testing</topic><topic>Methanol - chemistry</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>nicotinamide</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>Pyridines</topic><topic>research equipment</topic><topic>Signal to noise ratio</topic><topic>Solvents</topic><topic>Solvents - chemistry</topic><topic>Symbols</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hövener, Jan-Bernd</creatorcontrib><creatorcontrib>Schwaderlapp, Niels</creatorcontrib><creatorcontrib>Borowiak, Robert</creatorcontrib><creatorcontrib>Lickert, Thomas</creatorcontrib><creatorcontrib>Duckett, Simon B</creatorcontrib><creatorcontrib>Mewis, Ryan E</creatorcontrib><creatorcontrib>Adams, Ralph W</creatorcontrib><creatorcontrib>Burns, Michael J</creatorcontrib><creatorcontrib>Highton, Louise A. R</creatorcontrib><creatorcontrib>Green, Gary G. R</creatorcontrib><creatorcontrib>Olaru, Alexandra</creatorcontrib><creatorcontrib>Hennig, Jürgen</creatorcontrib><creatorcontrib>von Elverfeldt, Dominik</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hövener, Jan-Bernd</au><au>Schwaderlapp, Niels</au><au>Borowiak, Robert</au><au>Lickert, Thomas</au><au>Duckett, Simon B</au><au>Mewis, Ryan E</au><au>Adams, Ralph W</au><au>Burns, Michael J</au><au>Highton, Louise A. R</au><au>Green, Gary G. R</au><au>Olaru, Alexandra</au><au>Hennig, Jürgen</au><au>von Elverfeldt, Dominik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Biocompatible Nuclear Hyperpolarization Using Signal Amplification by Reversible Exchange: Quantitative in Situ Spectroscopy and High-Field Imaging</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2014-02-04</date><risdate>2014</risdate><volume>86</volume><issue>3</issue><spage>1767</spage><epage>1774</epage><pages>1767-1774</pages><issn>0003-2700</issn><issn>1520-6882</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Signal amplification by reversible exchange (SABRE) of a substrate and parahydrogen at a catalytic center promises to overcome the inherent insensitivity of magnetic resonance. In order to apply the new approach to biomedical applications, there is a need to develop experimental equipment, in situ quantification methods, and a biocompatible solvent. We present results detailing a low-field SABRE polarizer which provides well-controlled experimental conditions, defined spins manipulations, and which allows in situ detection of thermally polarized and hyperpolarized samples. We introduce a method for absolute quantification of hyperpolarization yield in situ by means of a thermally polarized reference. A maximum signal-to-noise ratio of ∼103 for 148 μmol of substance, a signal enhancement of 106 with respect to polarization transfer field of SABRE, or an absolute 1H-polarization level of ≈10–2 is achieved. In an important step toward biomedical application, we demonstrate 1H in situ NMR as well as 1H and 13C high-field MRI using hyperpolarized pyridine (d 3) and 13C nicotinamide in pure and 11% ethanol in aqueous solution. Further increase of hyperpolarization yield, implications of in situ detection, and in vivo application are discussed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24397559</pmid><doi>10.1021/ac403653q</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2014-02, Vol.86 (3), p.1767-1774 |
issn | 0003-2700 1520-6882 1520-6882 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3929132 |
source | MEDLINE; American Chemical Society Journals |
subjects | Amplification Analytical chemistry Aqueous solutions Biochemistry Biocompatibility Biomedical materials ethanol Ethanol - chemistry Ethyl alcohol Exchange image analysis Isomerism Magnetic resonance magnetic resonance imaging Magnetic Resonance Imaging - methods Magnetic Resonance Spectroscopy - methods Materials Testing Methanol - chemistry Models, Molecular Molecular Conformation nicotinamide nuclear magnetic resonance spectroscopy Pyridines research equipment Signal to noise ratio Solvents Solvents - chemistry Symbols Water - chemistry |
title | Toward Biocompatible Nuclear Hyperpolarization Using Signal Amplification by Reversible Exchange: Quantitative in Situ Spectroscopy and High-Field Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A53%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Biocompatible%20Nuclear%20Hyperpolarization%20Using%20Signal%20Amplification%20by%20Reversible%20Exchange:%20Quantitative%20in%20Situ%20Spectroscopy%20and%20High-Field%20Imaging&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Ho%CC%88vener,%20Jan-Bernd&rft.date=2014-02-04&rft.volume=86&rft.issue=3&rft.spage=1767&rft.epage=1774&rft.pages=1767-1774&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac403653q&rft_dat=%3Cproquest_pubme%3E1499123655%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1496782250&rft_id=info:pmid/24397559&rfr_iscdi=true |