Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway
Adaptation in signaling systems, during which the output returns to a fixed baseline after a change in the input, often involves negative feedback loops and plays a crucial role in eukaryotic chemotaxis. We determined the dynamical response to a uniform change in chemoattractant concentration of a e...
Gespeichert in:
Veröffentlicht in: | Science signaling 2012-01, Vol.5 (205), p.ra2-ra2 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | ra2 |
---|---|
container_issue | 205 |
container_start_page | ra2 |
container_title | Science signaling |
container_volume | 5 |
creator | Takeda, Kosuke Shao, Danying Adler, Micha Charest, Pascale G Loomis, William F Levine, Herbert Groisman, Alex Rappel, Wouter-Jan Firtel, Richard A |
description | Adaptation in signaling systems, during which the output returns to a fixed baseline after a change in the input, often involves negative feedback loops and plays a crucial role in eukaryotic chemotaxis. We determined the dynamical response to a uniform change in chemoattractant concentration of a eukaryotic chemotaxis pathway immediately downstream from G protein-coupled receptors. The response of an activated Ras showed near-perfect adaptation, leading us to attempt to fit the results using mathematical models for the two possible simple network topologies that can provide perfect adaptation. Only the incoherent feedforward network accurately described the experimental results. This analysis revealed that adaptation in this Ras pathway is achieved through the proportional activation of upstream components and not through negative feedback loops. Furthermore, these results are consistent with a local excitation, global inhibition mechanism for gradient sensing, possibly with a Ras guanosine triphosphatase-activating protein acting as a global inhibitor. |
doi_str_mv | 10.1126/scisignal.2002413 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3928814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>914298546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-126eca8ee913037e30d5564d8ef33046fc54412cf7862715f7ce47451de0bc63</originalsourceid><addsrcrecordid>eNp9UU1PGzEQtSqqkgI_oJfKN3pZ6s_17qVShWhBQuLC3Rq8Y-J2Y6e2E8i_Z6OkEVw4zUjz5s178wj5wtkF56L9Xlwo4THCeCEYE4rLD2TGe2manit9tO2VblhnzDH5XMofxlouRP-JHAshuDZSzgjeRJfmmDFW6hEHn_IT5IG6FGtOI31Ma8yxUBhgWaGGFGnyFFwNa6g40AyFhkiB4uov5E2qwVE3x0Wq8BwKXUKdP8HmlHz0MBY829cTcv_r6v7yurm9-31z-fO2cUqY2kye0EGH2HPJpEHJBq1bNXTopWSq9U4rxYXzpmuF4dobh8oozQdkD66VJ-THjna5eljg4CZTGUa7zGExabMJgn07iWFuJ4dW9qLruJoIzvcEOf1bYal2EYrDcYSIaVXs9FfRd1ptT317F8ml6lTPlBQTlO-gLqdSMvqDIM7sNkd7yNHuc5x2vr52ctj4H5x8AeIxni0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1348490432</pqid></control><display><type>article</type><title>Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway</title><source>MEDLINE</source><source>American Association for the Advancement of Science</source><creator>Takeda, Kosuke ; Shao, Danying ; Adler, Micha ; Charest, Pascale G ; Loomis, William F ; Levine, Herbert ; Groisman, Alex ; Rappel, Wouter-Jan ; Firtel, Richard A</creator><creatorcontrib>Takeda, Kosuke ; Shao, Danying ; Adler, Micha ; Charest, Pascale G ; Loomis, William F ; Levine, Herbert ; Groisman, Alex ; Rappel, Wouter-Jan ; Firtel, Richard A</creatorcontrib><description>Adaptation in signaling systems, during which the output returns to a fixed baseline after a change in the input, often involves negative feedback loops and plays a crucial role in eukaryotic chemotaxis. We determined the dynamical response to a uniform change in chemoattractant concentration of a eukaryotic chemotaxis pathway immediately downstream from G protein-coupled receptors. The response of an activated Ras showed near-perfect adaptation, leading us to attempt to fit the results using mathematical models for the two possible simple network topologies that can provide perfect adaptation. Only the incoherent feedforward network accurately described the experimental results. This analysis revealed that adaptation in this Ras pathway is achieved through the proportional activation of upstream components and not through negative feedback loops. Furthermore, these results are consistent with a local excitation, global inhibition mechanism for gradient sensing, possibly with a Ras guanosine triphosphatase-activating protein acting as a global inhibitor.</description><identifier>ISSN: 1945-0877</identifier><identifier>EISSN: 1937-9145</identifier><identifier>DOI: 10.1126/scisignal.2002413</identifier><identifier>PMID: 22215733</identifier><language>eng</language><publisher>United States</publisher><subject>Adaptation, Physiological - physiology ; Chemotactic Factors - metabolism ; Chemotaxis - physiology ; Cyclic AMP - metabolism ; Dictyostelium - physiology ; Feedback, Physiological - physiology ; Green Fluorescent Proteins - metabolism ; Microscopy, Fluorescence ; Models, Biological ; ras Proteins - metabolism ; Receptors, G-Protein-Coupled - metabolism</subject><ispartof>Science signaling, 2012-01, Vol.5 (205), p.ra2-ra2</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-126eca8ee913037e30d5564d8ef33046fc54412cf7862715f7ce47451de0bc63</citedby><cites>FETCH-LOGICAL-c427t-126eca8ee913037e30d5564d8ef33046fc54412cf7862715f7ce47451de0bc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2882,2883,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22215733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takeda, Kosuke</creatorcontrib><creatorcontrib>Shao, Danying</creatorcontrib><creatorcontrib>Adler, Micha</creatorcontrib><creatorcontrib>Charest, Pascale G</creatorcontrib><creatorcontrib>Loomis, William F</creatorcontrib><creatorcontrib>Levine, Herbert</creatorcontrib><creatorcontrib>Groisman, Alex</creatorcontrib><creatorcontrib>Rappel, Wouter-Jan</creatorcontrib><creatorcontrib>Firtel, Richard A</creatorcontrib><title>Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway</title><title>Science signaling</title><addtitle>Sci Signal</addtitle><description>Adaptation in signaling systems, during which the output returns to a fixed baseline after a change in the input, often involves negative feedback loops and plays a crucial role in eukaryotic chemotaxis. We determined the dynamical response to a uniform change in chemoattractant concentration of a eukaryotic chemotaxis pathway immediately downstream from G protein-coupled receptors. The response of an activated Ras showed near-perfect adaptation, leading us to attempt to fit the results using mathematical models for the two possible simple network topologies that can provide perfect adaptation. Only the incoherent feedforward network accurately described the experimental results. This analysis revealed that adaptation in this Ras pathway is achieved through the proportional activation of upstream components and not through negative feedback loops. Furthermore, these results are consistent with a local excitation, global inhibition mechanism for gradient sensing, possibly with a Ras guanosine triphosphatase-activating protein acting as a global inhibitor.</description><subject>Adaptation, Physiological - physiology</subject><subject>Chemotactic Factors - metabolism</subject><subject>Chemotaxis - physiology</subject><subject>Cyclic AMP - metabolism</subject><subject>Dictyostelium - physiology</subject><subject>Feedback, Physiological - physiology</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Biological</subject><subject>ras Proteins - metabolism</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><issn>1945-0877</issn><issn>1937-9145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1PGzEQtSqqkgI_oJfKN3pZ6s_17qVShWhBQuLC3Rq8Y-J2Y6e2E8i_Z6OkEVw4zUjz5s178wj5wtkF56L9Xlwo4THCeCEYE4rLD2TGe2manit9tO2VblhnzDH5XMofxlouRP-JHAshuDZSzgjeRJfmmDFW6hEHn_IT5IG6FGtOI31Ma8yxUBhgWaGGFGnyFFwNa6g40AyFhkiB4uov5E2qwVE3x0Wq8BwKXUKdP8HmlHz0MBY829cTcv_r6v7yurm9-31z-fO2cUqY2kye0EGH2HPJpEHJBq1bNXTopWSq9U4rxYXzpmuF4dobh8oozQdkD66VJ-THjna5eljg4CZTGUa7zGExabMJgn07iWFuJ4dW9qLruJoIzvcEOf1bYal2EYrDcYSIaVXs9FfRd1ptT317F8ml6lTPlBQTlO-gLqdSMvqDIM7sNkd7yNHuc5x2vr52ctj4H5x8AeIxni0</recordid><startdate>20120103</startdate><enddate>20120103</enddate><creator>Takeda, Kosuke</creator><creator>Shao, Danying</creator><creator>Adler, Micha</creator><creator>Charest, Pascale G</creator><creator>Loomis, William F</creator><creator>Levine, Herbert</creator><creator>Groisman, Alex</creator><creator>Rappel, Wouter-Jan</creator><creator>Firtel, Richard A</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120103</creationdate><title>Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway</title><author>Takeda, Kosuke ; Shao, Danying ; Adler, Micha ; Charest, Pascale G ; Loomis, William F ; Levine, Herbert ; Groisman, Alex ; Rappel, Wouter-Jan ; Firtel, Richard A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-126eca8ee913037e30d5564d8ef33046fc54412cf7862715f7ce47451de0bc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation, Physiological - physiology</topic><topic>Chemotactic Factors - metabolism</topic><topic>Chemotaxis - physiology</topic><topic>Cyclic AMP - metabolism</topic><topic>Dictyostelium - physiology</topic><topic>Feedback, Physiological - physiology</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Biological</topic><topic>ras Proteins - metabolism</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takeda, Kosuke</creatorcontrib><creatorcontrib>Shao, Danying</creatorcontrib><creatorcontrib>Adler, Micha</creatorcontrib><creatorcontrib>Charest, Pascale G</creatorcontrib><creatorcontrib>Loomis, William F</creatorcontrib><creatorcontrib>Levine, Herbert</creatorcontrib><creatorcontrib>Groisman, Alex</creatorcontrib><creatorcontrib>Rappel, Wouter-Jan</creatorcontrib><creatorcontrib>Firtel, Richard A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takeda, Kosuke</au><au>Shao, Danying</au><au>Adler, Micha</au><au>Charest, Pascale G</au><au>Loomis, William F</au><au>Levine, Herbert</au><au>Groisman, Alex</au><au>Rappel, Wouter-Jan</au><au>Firtel, Richard A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway</atitle><jtitle>Science signaling</jtitle><addtitle>Sci Signal</addtitle><date>2012-01-03</date><risdate>2012</risdate><volume>5</volume><issue>205</issue><spage>ra2</spage><epage>ra2</epage><pages>ra2-ra2</pages><issn>1945-0877</issn><eissn>1937-9145</eissn><abstract>Adaptation in signaling systems, during which the output returns to a fixed baseline after a change in the input, often involves negative feedback loops and plays a crucial role in eukaryotic chemotaxis. We determined the dynamical response to a uniform change in chemoattractant concentration of a eukaryotic chemotaxis pathway immediately downstream from G protein-coupled receptors. The response of an activated Ras showed near-perfect adaptation, leading us to attempt to fit the results using mathematical models for the two possible simple network topologies that can provide perfect adaptation. Only the incoherent feedforward network accurately described the experimental results. This analysis revealed that adaptation in this Ras pathway is achieved through the proportional activation of upstream components and not through negative feedback loops. Furthermore, these results are consistent with a local excitation, global inhibition mechanism for gradient sensing, possibly with a Ras guanosine triphosphatase-activating protein acting as a global inhibitor.</abstract><cop>United States</cop><pmid>22215733</pmid><doi>10.1126/scisignal.2002413</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1945-0877 |
ispartof | Science signaling, 2012-01, Vol.5 (205), p.ra2-ra2 |
issn | 1945-0877 1937-9145 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3928814 |
source | MEDLINE; American Association for the Advancement of Science |
subjects | Adaptation, Physiological - physiology Chemotactic Factors - metabolism Chemotaxis - physiology Cyclic AMP - metabolism Dictyostelium - physiology Feedback, Physiological - physiology Green Fluorescent Proteins - metabolism Microscopy, Fluorescence Models, Biological ras Proteins - metabolism Receptors, G-Protein-Coupled - metabolism |
title | Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incoherent%20feedforward%20control%20governs%20adaptation%20of%20activated%20ras%20in%20a%20eukaryotic%20chemotaxis%20pathway&rft.jtitle=Science%20signaling&rft.au=Takeda,%20Kosuke&rft.date=2012-01-03&rft.volume=5&rft.issue=205&rft.spage=ra2&rft.epage=ra2&rft.pages=ra2-ra2&rft.issn=1945-0877&rft.eissn=1937-9145&rft_id=info:doi/10.1126/scisignal.2002413&rft_dat=%3Cproquest_pubme%3E914298546%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1348490432&rft_id=info:pmid/22215733&rfr_iscdi=true |