Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway

Adaptation in signaling systems, during which the output returns to a fixed baseline after a change in the input, often involves negative feedback loops and plays a crucial role in eukaryotic chemotaxis. We determined the dynamical response to a uniform change in chemoattractant concentration of a e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science signaling 2012-01, Vol.5 (205), p.ra2-ra2
Hauptverfasser: Takeda, Kosuke, Shao, Danying, Adler, Micha, Charest, Pascale G, Loomis, William F, Levine, Herbert, Groisman, Alex, Rappel, Wouter-Jan, Firtel, Richard A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page ra2
container_issue 205
container_start_page ra2
container_title Science signaling
container_volume 5
creator Takeda, Kosuke
Shao, Danying
Adler, Micha
Charest, Pascale G
Loomis, William F
Levine, Herbert
Groisman, Alex
Rappel, Wouter-Jan
Firtel, Richard A
description Adaptation in signaling systems, during which the output returns to a fixed baseline after a change in the input, often involves negative feedback loops and plays a crucial role in eukaryotic chemotaxis. We determined the dynamical response to a uniform change in chemoattractant concentration of a eukaryotic chemotaxis pathway immediately downstream from G protein-coupled receptors. The response of an activated Ras showed near-perfect adaptation, leading us to attempt to fit the results using mathematical models for the two possible simple network topologies that can provide perfect adaptation. Only the incoherent feedforward network accurately described the experimental results. This analysis revealed that adaptation in this Ras pathway is achieved through the proportional activation of upstream components and not through negative feedback loops. Furthermore, these results are consistent with a local excitation, global inhibition mechanism for gradient sensing, possibly with a Ras guanosine triphosphatase-activating protein acting as a global inhibitor.
doi_str_mv 10.1126/scisignal.2002413
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3928814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>914298546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-126eca8ee913037e30d5564d8ef33046fc54412cf7862715f7ce47451de0bc63</originalsourceid><addsrcrecordid>eNp9UU1PGzEQtSqqkgI_oJfKN3pZ6s_17qVShWhBQuLC3Rq8Y-J2Y6e2E8i_Z6OkEVw4zUjz5s178wj5wtkF56L9Xlwo4THCeCEYE4rLD2TGe2manit9tO2VblhnzDH5XMofxlouRP-JHAshuDZSzgjeRJfmmDFW6hEHn_IT5IG6FGtOI31Ma8yxUBhgWaGGFGnyFFwNa6g40AyFhkiB4uov5E2qwVE3x0Wq8BwKXUKdP8HmlHz0MBY829cTcv_r6v7yurm9-31z-fO2cUqY2kye0EGH2HPJpEHJBq1bNXTopWSq9U4rxYXzpmuF4dobh8oozQdkD66VJ-THjna5eljg4CZTGUa7zGExabMJgn07iWFuJ4dW9qLruJoIzvcEOf1bYal2EYrDcYSIaVXs9FfRd1ptT317F8ml6lTPlBQTlO-gLqdSMvqDIM7sNkd7yNHuc5x2vr52ctj4H5x8AeIxni0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1348490432</pqid></control><display><type>article</type><title>Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway</title><source>MEDLINE</source><source>American Association for the Advancement of Science</source><creator>Takeda, Kosuke ; Shao, Danying ; Adler, Micha ; Charest, Pascale G ; Loomis, William F ; Levine, Herbert ; Groisman, Alex ; Rappel, Wouter-Jan ; Firtel, Richard A</creator><creatorcontrib>Takeda, Kosuke ; Shao, Danying ; Adler, Micha ; Charest, Pascale G ; Loomis, William F ; Levine, Herbert ; Groisman, Alex ; Rappel, Wouter-Jan ; Firtel, Richard A</creatorcontrib><description>Adaptation in signaling systems, during which the output returns to a fixed baseline after a change in the input, often involves negative feedback loops and plays a crucial role in eukaryotic chemotaxis. We determined the dynamical response to a uniform change in chemoattractant concentration of a eukaryotic chemotaxis pathway immediately downstream from G protein-coupled receptors. The response of an activated Ras showed near-perfect adaptation, leading us to attempt to fit the results using mathematical models for the two possible simple network topologies that can provide perfect adaptation. Only the incoherent feedforward network accurately described the experimental results. This analysis revealed that adaptation in this Ras pathway is achieved through the proportional activation of upstream components and not through negative feedback loops. Furthermore, these results are consistent with a local excitation, global inhibition mechanism for gradient sensing, possibly with a Ras guanosine triphosphatase-activating protein acting as a global inhibitor.</description><identifier>ISSN: 1945-0877</identifier><identifier>EISSN: 1937-9145</identifier><identifier>DOI: 10.1126/scisignal.2002413</identifier><identifier>PMID: 22215733</identifier><language>eng</language><publisher>United States</publisher><subject>Adaptation, Physiological - physiology ; Chemotactic Factors - metabolism ; Chemotaxis - physiology ; Cyclic AMP - metabolism ; Dictyostelium - physiology ; Feedback, Physiological - physiology ; Green Fluorescent Proteins - metabolism ; Microscopy, Fluorescence ; Models, Biological ; ras Proteins - metabolism ; Receptors, G-Protein-Coupled - metabolism</subject><ispartof>Science signaling, 2012-01, Vol.5 (205), p.ra2-ra2</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-126eca8ee913037e30d5564d8ef33046fc54412cf7862715f7ce47451de0bc63</citedby><cites>FETCH-LOGICAL-c427t-126eca8ee913037e30d5564d8ef33046fc54412cf7862715f7ce47451de0bc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2882,2883,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22215733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takeda, Kosuke</creatorcontrib><creatorcontrib>Shao, Danying</creatorcontrib><creatorcontrib>Adler, Micha</creatorcontrib><creatorcontrib>Charest, Pascale G</creatorcontrib><creatorcontrib>Loomis, William F</creatorcontrib><creatorcontrib>Levine, Herbert</creatorcontrib><creatorcontrib>Groisman, Alex</creatorcontrib><creatorcontrib>Rappel, Wouter-Jan</creatorcontrib><creatorcontrib>Firtel, Richard A</creatorcontrib><title>Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway</title><title>Science signaling</title><addtitle>Sci Signal</addtitle><description>Adaptation in signaling systems, during which the output returns to a fixed baseline after a change in the input, often involves negative feedback loops and plays a crucial role in eukaryotic chemotaxis. We determined the dynamical response to a uniform change in chemoattractant concentration of a eukaryotic chemotaxis pathway immediately downstream from G protein-coupled receptors. The response of an activated Ras showed near-perfect adaptation, leading us to attempt to fit the results using mathematical models for the two possible simple network topologies that can provide perfect adaptation. Only the incoherent feedforward network accurately described the experimental results. This analysis revealed that adaptation in this Ras pathway is achieved through the proportional activation of upstream components and not through negative feedback loops. Furthermore, these results are consistent with a local excitation, global inhibition mechanism for gradient sensing, possibly with a Ras guanosine triphosphatase-activating protein acting as a global inhibitor.</description><subject>Adaptation, Physiological - physiology</subject><subject>Chemotactic Factors - metabolism</subject><subject>Chemotaxis - physiology</subject><subject>Cyclic AMP - metabolism</subject><subject>Dictyostelium - physiology</subject><subject>Feedback, Physiological - physiology</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Biological</subject><subject>ras Proteins - metabolism</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><issn>1945-0877</issn><issn>1937-9145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1PGzEQtSqqkgI_oJfKN3pZ6s_17qVShWhBQuLC3Rq8Y-J2Y6e2E8i_Z6OkEVw4zUjz5s178wj5wtkF56L9Xlwo4THCeCEYE4rLD2TGe2manit9tO2VblhnzDH5XMofxlouRP-JHAshuDZSzgjeRJfmmDFW6hEHn_IT5IG6FGtOI31Ma8yxUBhgWaGGFGnyFFwNa6g40AyFhkiB4uov5E2qwVE3x0Wq8BwKXUKdP8HmlHz0MBY829cTcv_r6v7yurm9-31z-fO2cUqY2kye0EGH2HPJpEHJBq1bNXTopWSq9U4rxYXzpmuF4dobh8oozQdkD66VJ-THjna5eljg4CZTGUa7zGExabMJgn07iWFuJ4dW9qLruJoIzvcEOf1bYal2EYrDcYSIaVXs9FfRd1ptT317F8ml6lTPlBQTlO-gLqdSMvqDIM7sNkd7yNHuc5x2vr52ctj4H5x8AeIxni0</recordid><startdate>20120103</startdate><enddate>20120103</enddate><creator>Takeda, Kosuke</creator><creator>Shao, Danying</creator><creator>Adler, Micha</creator><creator>Charest, Pascale G</creator><creator>Loomis, William F</creator><creator>Levine, Herbert</creator><creator>Groisman, Alex</creator><creator>Rappel, Wouter-Jan</creator><creator>Firtel, Richard A</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120103</creationdate><title>Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway</title><author>Takeda, Kosuke ; Shao, Danying ; Adler, Micha ; Charest, Pascale G ; Loomis, William F ; Levine, Herbert ; Groisman, Alex ; Rappel, Wouter-Jan ; Firtel, Richard A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-126eca8ee913037e30d5564d8ef33046fc54412cf7862715f7ce47451de0bc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation, Physiological - physiology</topic><topic>Chemotactic Factors - metabolism</topic><topic>Chemotaxis - physiology</topic><topic>Cyclic AMP - metabolism</topic><topic>Dictyostelium - physiology</topic><topic>Feedback, Physiological - physiology</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Biological</topic><topic>ras Proteins - metabolism</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takeda, Kosuke</creatorcontrib><creatorcontrib>Shao, Danying</creatorcontrib><creatorcontrib>Adler, Micha</creatorcontrib><creatorcontrib>Charest, Pascale G</creatorcontrib><creatorcontrib>Loomis, William F</creatorcontrib><creatorcontrib>Levine, Herbert</creatorcontrib><creatorcontrib>Groisman, Alex</creatorcontrib><creatorcontrib>Rappel, Wouter-Jan</creatorcontrib><creatorcontrib>Firtel, Richard A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takeda, Kosuke</au><au>Shao, Danying</au><au>Adler, Micha</au><au>Charest, Pascale G</au><au>Loomis, William F</au><au>Levine, Herbert</au><au>Groisman, Alex</au><au>Rappel, Wouter-Jan</au><au>Firtel, Richard A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway</atitle><jtitle>Science signaling</jtitle><addtitle>Sci Signal</addtitle><date>2012-01-03</date><risdate>2012</risdate><volume>5</volume><issue>205</issue><spage>ra2</spage><epage>ra2</epage><pages>ra2-ra2</pages><issn>1945-0877</issn><eissn>1937-9145</eissn><abstract>Adaptation in signaling systems, during which the output returns to a fixed baseline after a change in the input, often involves negative feedback loops and plays a crucial role in eukaryotic chemotaxis. We determined the dynamical response to a uniform change in chemoattractant concentration of a eukaryotic chemotaxis pathway immediately downstream from G protein-coupled receptors. The response of an activated Ras showed near-perfect adaptation, leading us to attempt to fit the results using mathematical models for the two possible simple network topologies that can provide perfect adaptation. Only the incoherent feedforward network accurately described the experimental results. This analysis revealed that adaptation in this Ras pathway is achieved through the proportional activation of upstream components and not through negative feedback loops. Furthermore, these results are consistent with a local excitation, global inhibition mechanism for gradient sensing, possibly with a Ras guanosine triphosphatase-activating protein acting as a global inhibitor.</abstract><cop>United States</cop><pmid>22215733</pmid><doi>10.1126/scisignal.2002413</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1945-0877
ispartof Science signaling, 2012-01, Vol.5 (205), p.ra2-ra2
issn 1945-0877
1937-9145
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3928814
source MEDLINE; American Association for the Advancement of Science
subjects Adaptation, Physiological - physiology
Chemotactic Factors - metabolism
Chemotaxis - physiology
Cyclic AMP - metabolism
Dictyostelium - physiology
Feedback, Physiological - physiology
Green Fluorescent Proteins - metabolism
Microscopy, Fluorescence
Models, Biological
ras Proteins - metabolism
Receptors, G-Protein-Coupled - metabolism
title Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incoherent%20feedforward%20control%20governs%20adaptation%20of%20activated%20ras%20in%20a%20eukaryotic%20chemotaxis%20pathway&rft.jtitle=Science%20signaling&rft.au=Takeda,%20Kosuke&rft.date=2012-01-03&rft.volume=5&rft.issue=205&rft.spage=ra2&rft.epage=ra2&rft.pages=ra2-ra2&rft.issn=1945-0877&rft.eissn=1937-9145&rft_id=info:doi/10.1126/scisignal.2002413&rft_dat=%3Cproquest_pubme%3E914298546%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1348490432&rft_id=info:pmid/22215733&rfr_iscdi=true