Molecular Mechanisms of Influenza Inhibition by Surfactant Protein D Revealed by Large-scale Molecular Dynamics Simulation

Surfactant protein D (SP-D), a mammalian C-type lectin, is the primary innate inhibitor of influenza A virus (IAV) in the lung. SP-D interactions with highly branched viral N-linked glycans on hemagglutinin (HA), an abundant IAV envelope protein and critical virulence factor, promote viral aggregati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2013-11, Vol.52 (47), p.8527-8538
Hauptverfasser: Goh, Boon Chong, Rynkiewicz, Michael J., Cafarella, Tanya R., White, Mitchell R., Hartshorn, Kevan L., Allen, Kimberly, Crouch, Erika C., Calin, Oliviana, Seeberger, Peter H., Schulten, Klaus, Seaton, Barbara A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8538
container_issue 47
container_start_page 8527
container_title Biochemistry (Easton)
container_volume 52
creator Goh, Boon Chong
Rynkiewicz, Michael J.
Cafarella, Tanya R.
White, Mitchell R.
Hartshorn, Kevan L.
Allen, Kimberly
Crouch, Erika C.
Calin, Oliviana
Seeberger, Peter H.
Schulten, Klaus
Seaton, Barbara A.
description Surfactant protein D (SP-D), a mammalian C-type lectin, is the primary innate inhibitor of influenza A virus (IAV) in the lung. SP-D interactions with highly branched viral N-linked glycans on hemagglutinin (HA), an abundant IAV envelope protein and critical virulence factor, promote viral aggregation and neutralization through as yet unknown molecular mechanisms. Two truncated human SP-D forms, wild-type (WT) and double mutant D325A+R343V, representing neck and carbohydrate recognition domains are compared in this study. Whereas both WT and D325A+R343V bind to isolated glycosylated HA, WT does not inhibit IAV in neutralization assays; in contrast, D325A+R343V neutralization compares well with full-length native SP-D. To elucidate the mechanism for these biochemical observations, we have solved crystal structures of D325A+R343V in the presence and absence of a viral nonamannoside (Man9). Based on the D325A+R343V/Man9 structure and other crystallographic data, models of complexes between HA and WT or D325A+R343V were produced and subjected to molecular dynamics. Simulations reveal that whereas WT and D325A+R343V both block the sialic acid receptor site of HA, the D325A+R343V complex is more stable, with stronger binding due to additional hydrogen bonds and hydrophobic interactions with HA residues. Furthermore, the blocking mechanism of HA differs for WT and D325A+R343V due to alternate glycan binding modes. The combined results suggest a mechanism through which the mode of SP-D/HA interaction could significantly influence viral aggregation and neutralization. These studies provide the first atomic-level molecular view of an innate host defense lectin inhibiting its viral glycoprotein target.
doi_str_mv 10.1021/bi4010683
format Article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3927399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_3927399</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_39273993</originalsourceid><addsrcrecordid>eNqljMtKxDAUhoMoTr0sfIO8QDVN09Zs3DiKggPiuC-nmdPpkTQZknag8_R2QBDXrv4rH2M3mbjNhMzuGlIiE-V9fsKSrJAiVVoXpywRQpSp1KVYsIsYv-aoRKXO2UIqKVVVVAk7rLxFM1oIfIWmA0exj9y3_NW1dkR3gNl11NBA3vFm4usxtGAGcAN_D35AcnzJP3CPYHFzPLxB2GIazZz5L3w5OejJRL6mfi6OtCt21oKNeP2jl-zh-enz8SXdjU2PG4NuCGDrXaAewlR7oPrv4qirt35f51pWudb5vwHfgt5sjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Mechanisms of Influenza Inhibition by Surfactant Protein D Revealed by Large-scale Molecular Dynamics Simulation</title><source>American Chemical Society Journals</source><creator>Goh, Boon Chong ; Rynkiewicz, Michael J. ; Cafarella, Tanya R. ; White, Mitchell R. ; Hartshorn, Kevan L. ; Allen, Kimberly ; Crouch, Erika C. ; Calin, Oliviana ; Seeberger, Peter H. ; Schulten, Klaus ; Seaton, Barbara A.</creator><creatorcontrib>Goh, Boon Chong ; Rynkiewicz, Michael J. ; Cafarella, Tanya R. ; White, Mitchell R. ; Hartshorn, Kevan L. ; Allen, Kimberly ; Crouch, Erika C. ; Calin, Oliviana ; Seeberger, Peter H. ; Schulten, Klaus ; Seaton, Barbara A.</creatorcontrib><description>Surfactant protein D (SP-D), a mammalian C-type lectin, is the primary innate inhibitor of influenza A virus (IAV) in the lung. SP-D interactions with highly branched viral N-linked glycans on hemagglutinin (HA), an abundant IAV envelope protein and critical virulence factor, promote viral aggregation and neutralization through as yet unknown molecular mechanisms. Two truncated human SP-D forms, wild-type (WT) and double mutant D325A+R343V, representing neck and carbohydrate recognition domains are compared in this study. Whereas both WT and D325A+R343V bind to isolated glycosylated HA, WT does not inhibit IAV in neutralization assays; in contrast, D325A+R343V neutralization compares well with full-length native SP-D. To elucidate the mechanism for these biochemical observations, we have solved crystal structures of D325A+R343V in the presence and absence of a viral nonamannoside (Man9). Based on the D325A+R343V/Man9 structure and other crystallographic data, models of complexes between HA and WT or D325A+R343V were produced and subjected to molecular dynamics. Simulations reveal that whereas WT and D325A+R343V both block the sialic acid receptor site of HA, the D325A+R343V complex is more stable, with stronger binding due to additional hydrogen bonds and hydrophobic interactions with HA residues. Furthermore, the blocking mechanism of HA differs for WT and D325A+R343V due to alternate glycan binding modes. The combined results suggest a mechanism through which the mode of SP-D/HA interaction could significantly influence viral aggregation and neutralization. These studies provide the first atomic-level molecular view of an innate host defense lectin inhibiting its viral glycoprotein target.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi4010683</identifier><identifier>PMID: 24224757</identifier><language>eng</language><ispartof>Biochemistry (Easton), 2013-11, Vol.52 (47), p.8527-8538</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Goh, Boon Chong</creatorcontrib><creatorcontrib>Rynkiewicz, Michael J.</creatorcontrib><creatorcontrib>Cafarella, Tanya R.</creatorcontrib><creatorcontrib>White, Mitchell R.</creatorcontrib><creatorcontrib>Hartshorn, Kevan L.</creatorcontrib><creatorcontrib>Allen, Kimberly</creatorcontrib><creatorcontrib>Crouch, Erika C.</creatorcontrib><creatorcontrib>Calin, Oliviana</creatorcontrib><creatorcontrib>Seeberger, Peter H.</creatorcontrib><creatorcontrib>Schulten, Klaus</creatorcontrib><creatorcontrib>Seaton, Barbara A.</creatorcontrib><title>Molecular Mechanisms of Influenza Inhibition by Surfactant Protein D Revealed by Large-scale Molecular Dynamics Simulation</title><title>Biochemistry (Easton)</title><description>Surfactant protein D (SP-D), a mammalian C-type lectin, is the primary innate inhibitor of influenza A virus (IAV) in the lung. SP-D interactions with highly branched viral N-linked glycans on hemagglutinin (HA), an abundant IAV envelope protein and critical virulence factor, promote viral aggregation and neutralization through as yet unknown molecular mechanisms. Two truncated human SP-D forms, wild-type (WT) and double mutant D325A+R343V, representing neck and carbohydrate recognition domains are compared in this study. Whereas both WT and D325A+R343V bind to isolated glycosylated HA, WT does not inhibit IAV in neutralization assays; in contrast, D325A+R343V neutralization compares well with full-length native SP-D. To elucidate the mechanism for these biochemical observations, we have solved crystal structures of D325A+R343V in the presence and absence of a viral nonamannoside (Man9). Based on the D325A+R343V/Man9 structure and other crystallographic data, models of complexes between HA and WT or D325A+R343V were produced and subjected to molecular dynamics. Simulations reveal that whereas WT and D325A+R343V both block the sialic acid receptor site of HA, the D325A+R343V complex is more stable, with stronger binding due to additional hydrogen bonds and hydrophobic interactions with HA residues. Furthermore, the blocking mechanism of HA differs for WT and D325A+R343V due to alternate glycan binding modes. The combined results suggest a mechanism through which the mode of SP-D/HA interaction could significantly influence viral aggregation and neutralization. These studies provide the first atomic-level molecular view of an innate host defense lectin inhibiting its viral glycoprotein target.</description><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqljMtKxDAUhoMoTr0sfIO8QDVN09Zs3DiKggPiuC-nmdPpkTQZknag8_R2QBDXrv4rH2M3mbjNhMzuGlIiE-V9fsKSrJAiVVoXpywRQpSp1KVYsIsYv-aoRKXO2UIqKVVVVAk7rLxFM1oIfIWmA0exj9y3_NW1dkR3gNl11NBA3vFm4usxtGAGcAN_D35AcnzJP3CPYHFzPLxB2GIazZz5L3w5OejJRL6mfi6OtCt21oKNeP2jl-zh-enz8SXdjU2PG4NuCGDrXaAewlR7oPrv4qirt35f51pWudb5vwHfgt5sjQ</recordid><startdate>20131113</startdate><enddate>20131113</enddate><creator>Goh, Boon Chong</creator><creator>Rynkiewicz, Michael J.</creator><creator>Cafarella, Tanya R.</creator><creator>White, Mitchell R.</creator><creator>Hartshorn, Kevan L.</creator><creator>Allen, Kimberly</creator><creator>Crouch, Erika C.</creator><creator>Calin, Oliviana</creator><creator>Seeberger, Peter H.</creator><creator>Schulten, Klaus</creator><creator>Seaton, Barbara A.</creator><scope>5PM</scope></search><sort><creationdate>20131113</creationdate><title>Molecular Mechanisms of Influenza Inhibition by Surfactant Protein D Revealed by Large-scale Molecular Dynamics Simulation</title><author>Goh, Boon Chong ; Rynkiewicz, Michael J. ; Cafarella, Tanya R. ; White, Mitchell R. ; Hartshorn, Kevan L. ; Allen, Kimberly ; Crouch, Erika C. ; Calin, Oliviana ; Seeberger, Peter H. ; Schulten, Klaus ; Seaton, Barbara A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_39273993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goh, Boon Chong</creatorcontrib><creatorcontrib>Rynkiewicz, Michael J.</creatorcontrib><creatorcontrib>Cafarella, Tanya R.</creatorcontrib><creatorcontrib>White, Mitchell R.</creatorcontrib><creatorcontrib>Hartshorn, Kevan L.</creatorcontrib><creatorcontrib>Allen, Kimberly</creatorcontrib><creatorcontrib>Crouch, Erika C.</creatorcontrib><creatorcontrib>Calin, Oliviana</creatorcontrib><creatorcontrib>Seeberger, Peter H.</creatorcontrib><creatorcontrib>Schulten, Klaus</creatorcontrib><creatorcontrib>Seaton, Barbara A.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goh, Boon Chong</au><au>Rynkiewicz, Michael J.</au><au>Cafarella, Tanya R.</au><au>White, Mitchell R.</au><au>Hartshorn, Kevan L.</au><au>Allen, Kimberly</au><au>Crouch, Erika C.</au><au>Calin, Oliviana</au><au>Seeberger, Peter H.</au><au>Schulten, Klaus</au><au>Seaton, Barbara A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Mechanisms of Influenza Inhibition by Surfactant Protein D Revealed by Large-scale Molecular Dynamics Simulation</atitle><jtitle>Biochemistry (Easton)</jtitle><date>2013-11-13</date><risdate>2013</risdate><volume>52</volume><issue>47</issue><spage>8527</spage><epage>8538</epage><pages>8527-8538</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Surfactant protein D (SP-D), a mammalian C-type lectin, is the primary innate inhibitor of influenza A virus (IAV) in the lung. SP-D interactions with highly branched viral N-linked glycans on hemagglutinin (HA), an abundant IAV envelope protein and critical virulence factor, promote viral aggregation and neutralization through as yet unknown molecular mechanisms. Two truncated human SP-D forms, wild-type (WT) and double mutant D325A+R343V, representing neck and carbohydrate recognition domains are compared in this study. Whereas both WT and D325A+R343V bind to isolated glycosylated HA, WT does not inhibit IAV in neutralization assays; in contrast, D325A+R343V neutralization compares well with full-length native SP-D. To elucidate the mechanism for these biochemical observations, we have solved crystal structures of D325A+R343V in the presence and absence of a viral nonamannoside (Man9). Based on the D325A+R343V/Man9 structure and other crystallographic data, models of complexes between HA and WT or D325A+R343V were produced and subjected to molecular dynamics. Simulations reveal that whereas WT and D325A+R343V both block the sialic acid receptor site of HA, the D325A+R343V complex is more stable, with stronger binding due to additional hydrogen bonds and hydrophobic interactions with HA residues. Furthermore, the blocking mechanism of HA differs for WT and D325A+R343V due to alternate glycan binding modes. The combined results suggest a mechanism through which the mode of SP-D/HA interaction could significantly influence viral aggregation and neutralization. These studies provide the first atomic-level molecular view of an innate host defense lectin inhibiting its viral glycoprotein target.</abstract><pmid>24224757</pmid><doi>10.1021/bi4010683</doi></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2013-11, Vol.52 (47), p.8527-8538
issn 0006-2960
1520-4995
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3927399
source American Chemical Society Journals
title Molecular Mechanisms of Influenza Inhibition by Surfactant Protein D Revealed by Large-scale Molecular Dynamics Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Mechanisms%20of%20Influenza%20Inhibition%20by%20Surfactant%20Protein%20D%20Revealed%20by%20Large-scale%20Molecular%20Dynamics%20Simulation&rft.jtitle=Biochemistry%20(Easton)&rft.au=Goh,%20Boon%20Chong&rft.date=2013-11-13&rft.volume=52&rft.issue=47&rft.spage=8527&rft.epage=8538&rft.pages=8527-8538&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi4010683&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_3927399%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24224757&rfr_iscdi=true