Molecular Mechanisms of Influenza Inhibition by Surfactant Protein D Revealed by Large-scale Molecular Dynamics Simulation
Surfactant protein D (SP-D), a mammalian C-type lectin, is the primary innate inhibitor of influenza A virus (IAV) in the lung. SP-D interactions with highly branched viral N-linked glycans on hemagglutinin (HA), an abundant IAV envelope protein and critical virulence factor, promote viral aggregati...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2013-11, Vol.52 (47), p.8527-8538 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8538 |
---|---|
container_issue | 47 |
container_start_page | 8527 |
container_title | Biochemistry (Easton) |
container_volume | 52 |
creator | Goh, Boon Chong Rynkiewicz, Michael J. Cafarella, Tanya R. White, Mitchell R. Hartshorn, Kevan L. Allen, Kimberly Crouch, Erika C. Calin, Oliviana Seeberger, Peter H. Schulten, Klaus Seaton, Barbara A. |
description | Surfactant protein D (SP-D), a mammalian C-type lectin, is the primary innate inhibitor of influenza A virus (IAV) in the lung. SP-D interactions with highly branched viral N-linked glycans on hemagglutinin (HA), an abundant IAV envelope protein and critical virulence factor, promote viral aggregation and neutralization through as yet unknown molecular mechanisms. Two truncated human SP-D forms, wild-type (WT) and double mutant D325A+R343V, representing neck and carbohydrate recognition domains are compared in this study. Whereas both WT and D325A+R343V bind to isolated glycosylated HA, WT does not inhibit IAV in neutralization assays; in contrast, D325A+R343V neutralization compares well with full-length native SP-D. To elucidate the mechanism for these biochemical observations, we have solved crystal structures of D325A+R343V in the presence and absence of a viral nonamannoside (Man9). Based on the D325A+R343V/Man9 structure and other crystallographic data, models of complexes between HA and WT or D325A+R343V were produced and subjected to molecular dynamics. Simulations reveal that whereas WT and D325A+R343V both block the sialic acid receptor site of HA, the D325A+R343V complex is more stable, with stronger binding due to additional hydrogen bonds and hydrophobic interactions with HA residues. Furthermore, the blocking mechanism of HA differs for WT and D325A+R343V due to alternate glycan binding modes. The combined results suggest a mechanism through which the mode of SP-D/HA interaction could significantly influence viral aggregation and neutralization. These studies provide the first atomic-level molecular view of an innate host defense lectin inhibiting its viral glycoprotein target. |
doi_str_mv | 10.1021/bi4010683 |
format | Article |
fullrecord | <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3927399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_3927399</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_39273993</originalsourceid><addsrcrecordid>eNqljMtKxDAUhoMoTr0sfIO8QDVN09Zs3DiKggPiuC-nmdPpkTQZknag8_R2QBDXrv4rH2M3mbjNhMzuGlIiE-V9fsKSrJAiVVoXpywRQpSp1KVYsIsYv-aoRKXO2UIqKVVVVAk7rLxFM1oIfIWmA0exj9y3_NW1dkR3gNl11NBA3vFm4usxtGAGcAN_D35AcnzJP3CPYHFzPLxB2GIazZz5L3w5OejJRL6mfi6OtCt21oKNeP2jl-zh-enz8SXdjU2PG4NuCGDrXaAewlR7oPrv4qirt35f51pWudb5vwHfgt5sjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Mechanisms of Influenza Inhibition by Surfactant Protein D Revealed by Large-scale Molecular Dynamics Simulation</title><source>American Chemical Society Journals</source><creator>Goh, Boon Chong ; Rynkiewicz, Michael J. ; Cafarella, Tanya R. ; White, Mitchell R. ; Hartshorn, Kevan L. ; Allen, Kimberly ; Crouch, Erika C. ; Calin, Oliviana ; Seeberger, Peter H. ; Schulten, Klaus ; Seaton, Barbara A.</creator><creatorcontrib>Goh, Boon Chong ; Rynkiewicz, Michael J. ; Cafarella, Tanya R. ; White, Mitchell R. ; Hartshorn, Kevan L. ; Allen, Kimberly ; Crouch, Erika C. ; Calin, Oliviana ; Seeberger, Peter H. ; Schulten, Klaus ; Seaton, Barbara A.</creatorcontrib><description>Surfactant protein D (SP-D), a mammalian C-type lectin, is the primary innate inhibitor of influenza A virus (IAV) in the lung. SP-D interactions with highly branched viral N-linked glycans on hemagglutinin (HA), an abundant IAV envelope protein and critical virulence factor, promote viral aggregation and neutralization through as yet unknown molecular mechanisms. Two truncated human SP-D forms, wild-type (WT) and double mutant D325A+R343V, representing neck and carbohydrate recognition domains are compared in this study. Whereas both WT and D325A+R343V bind to isolated glycosylated HA, WT does not inhibit IAV in neutralization assays; in contrast, D325A+R343V neutralization compares well with full-length native SP-D. To elucidate the mechanism for these biochemical observations, we have solved crystal structures of D325A+R343V in the presence and absence of a viral nonamannoside (Man9). Based on the D325A+R343V/Man9 structure and other crystallographic data, models of complexes between HA and WT or D325A+R343V were produced and subjected to molecular dynamics. Simulations reveal that whereas WT and D325A+R343V both block the sialic acid receptor site of HA, the D325A+R343V complex is more stable, with stronger binding due to additional hydrogen bonds and hydrophobic interactions with HA residues. Furthermore, the blocking mechanism of HA differs for WT and D325A+R343V due to alternate glycan binding modes. The combined results suggest a mechanism through which the mode of SP-D/HA interaction could significantly influence viral aggregation and neutralization. These studies provide the first atomic-level molecular view of an innate host defense lectin inhibiting its viral glycoprotein target.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi4010683</identifier><identifier>PMID: 24224757</identifier><language>eng</language><ispartof>Biochemistry (Easton), 2013-11, Vol.52 (47), p.8527-8538</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Goh, Boon Chong</creatorcontrib><creatorcontrib>Rynkiewicz, Michael J.</creatorcontrib><creatorcontrib>Cafarella, Tanya R.</creatorcontrib><creatorcontrib>White, Mitchell R.</creatorcontrib><creatorcontrib>Hartshorn, Kevan L.</creatorcontrib><creatorcontrib>Allen, Kimberly</creatorcontrib><creatorcontrib>Crouch, Erika C.</creatorcontrib><creatorcontrib>Calin, Oliviana</creatorcontrib><creatorcontrib>Seeberger, Peter H.</creatorcontrib><creatorcontrib>Schulten, Klaus</creatorcontrib><creatorcontrib>Seaton, Barbara A.</creatorcontrib><title>Molecular Mechanisms of Influenza Inhibition by Surfactant Protein D Revealed by Large-scale Molecular Dynamics Simulation</title><title>Biochemistry (Easton)</title><description>Surfactant protein D (SP-D), a mammalian C-type lectin, is the primary innate inhibitor of influenza A virus (IAV) in the lung. SP-D interactions with highly branched viral N-linked glycans on hemagglutinin (HA), an abundant IAV envelope protein and critical virulence factor, promote viral aggregation and neutralization through as yet unknown molecular mechanisms. Two truncated human SP-D forms, wild-type (WT) and double mutant D325A+R343V, representing neck and carbohydrate recognition domains are compared in this study. Whereas both WT and D325A+R343V bind to isolated glycosylated HA, WT does not inhibit IAV in neutralization assays; in contrast, D325A+R343V neutralization compares well with full-length native SP-D. To elucidate the mechanism for these biochemical observations, we have solved crystal structures of D325A+R343V in the presence and absence of a viral nonamannoside (Man9). Based on the D325A+R343V/Man9 structure and other crystallographic data, models of complexes between HA and WT or D325A+R343V were produced and subjected to molecular dynamics. Simulations reveal that whereas WT and D325A+R343V both block the sialic acid receptor site of HA, the D325A+R343V complex is more stable, with stronger binding due to additional hydrogen bonds and hydrophobic interactions with HA residues. Furthermore, the blocking mechanism of HA differs for WT and D325A+R343V due to alternate glycan binding modes. The combined results suggest a mechanism through which the mode of SP-D/HA interaction could significantly influence viral aggregation and neutralization. These studies provide the first atomic-level molecular view of an innate host defense lectin inhibiting its viral glycoprotein target.</description><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqljMtKxDAUhoMoTr0sfIO8QDVN09Zs3DiKggPiuC-nmdPpkTQZknag8_R2QBDXrv4rH2M3mbjNhMzuGlIiE-V9fsKSrJAiVVoXpywRQpSp1KVYsIsYv-aoRKXO2UIqKVVVVAk7rLxFM1oIfIWmA0exj9y3_NW1dkR3gNl11NBA3vFm4usxtGAGcAN_D35AcnzJP3CPYHFzPLxB2GIazZz5L3w5OejJRL6mfi6OtCt21oKNeP2jl-zh-enz8SXdjU2PG4NuCGDrXaAewlR7oPrv4qirt35f51pWudb5vwHfgt5sjQ</recordid><startdate>20131113</startdate><enddate>20131113</enddate><creator>Goh, Boon Chong</creator><creator>Rynkiewicz, Michael J.</creator><creator>Cafarella, Tanya R.</creator><creator>White, Mitchell R.</creator><creator>Hartshorn, Kevan L.</creator><creator>Allen, Kimberly</creator><creator>Crouch, Erika C.</creator><creator>Calin, Oliviana</creator><creator>Seeberger, Peter H.</creator><creator>Schulten, Klaus</creator><creator>Seaton, Barbara A.</creator><scope>5PM</scope></search><sort><creationdate>20131113</creationdate><title>Molecular Mechanisms of Influenza Inhibition by Surfactant Protein D Revealed by Large-scale Molecular Dynamics Simulation</title><author>Goh, Boon Chong ; Rynkiewicz, Michael J. ; Cafarella, Tanya R. ; White, Mitchell R. ; Hartshorn, Kevan L. ; Allen, Kimberly ; Crouch, Erika C. ; Calin, Oliviana ; Seeberger, Peter H. ; Schulten, Klaus ; Seaton, Barbara A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_39273993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goh, Boon Chong</creatorcontrib><creatorcontrib>Rynkiewicz, Michael J.</creatorcontrib><creatorcontrib>Cafarella, Tanya R.</creatorcontrib><creatorcontrib>White, Mitchell R.</creatorcontrib><creatorcontrib>Hartshorn, Kevan L.</creatorcontrib><creatorcontrib>Allen, Kimberly</creatorcontrib><creatorcontrib>Crouch, Erika C.</creatorcontrib><creatorcontrib>Calin, Oliviana</creatorcontrib><creatorcontrib>Seeberger, Peter H.</creatorcontrib><creatorcontrib>Schulten, Klaus</creatorcontrib><creatorcontrib>Seaton, Barbara A.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goh, Boon Chong</au><au>Rynkiewicz, Michael J.</au><au>Cafarella, Tanya R.</au><au>White, Mitchell R.</au><au>Hartshorn, Kevan L.</au><au>Allen, Kimberly</au><au>Crouch, Erika C.</au><au>Calin, Oliviana</au><au>Seeberger, Peter H.</au><au>Schulten, Klaus</au><au>Seaton, Barbara A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Mechanisms of Influenza Inhibition by Surfactant Protein D Revealed by Large-scale Molecular Dynamics Simulation</atitle><jtitle>Biochemistry (Easton)</jtitle><date>2013-11-13</date><risdate>2013</risdate><volume>52</volume><issue>47</issue><spage>8527</spage><epage>8538</epage><pages>8527-8538</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Surfactant protein D (SP-D), a mammalian C-type lectin, is the primary innate inhibitor of influenza A virus (IAV) in the lung. SP-D interactions with highly branched viral N-linked glycans on hemagglutinin (HA), an abundant IAV envelope protein and critical virulence factor, promote viral aggregation and neutralization through as yet unknown molecular mechanisms. Two truncated human SP-D forms, wild-type (WT) and double mutant D325A+R343V, representing neck and carbohydrate recognition domains are compared in this study. Whereas both WT and D325A+R343V bind to isolated glycosylated HA, WT does not inhibit IAV in neutralization assays; in contrast, D325A+R343V neutralization compares well with full-length native SP-D. To elucidate the mechanism for these biochemical observations, we have solved crystal structures of D325A+R343V in the presence and absence of a viral nonamannoside (Man9). Based on the D325A+R343V/Man9 structure and other crystallographic data, models of complexes between HA and WT or D325A+R343V were produced and subjected to molecular dynamics. Simulations reveal that whereas WT and D325A+R343V both block the sialic acid receptor site of HA, the D325A+R343V complex is more stable, with stronger binding due to additional hydrogen bonds and hydrophobic interactions with HA residues. Furthermore, the blocking mechanism of HA differs for WT and D325A+R343V due to alternate glycan binding modes. The combined results suggest a mechanism through which the mode of SP-D/HA interaction could significantly influence viral aggregation and neutralization. These studies provide the first atomic-level molecular view of an innate host defense lectin inhibiting its viral glycoprotein target.</abstract><pmid>24224757</pmid><doi>10.1021/bi4010683</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2013-11, Vol.52 (47), p.8527-8538 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3927399 |
source | American Chemical Society Journals |
title | Molecular Mechanisms of Influenza Inhibition by Surfactant Protein D Revealed by Large-scale Molecular Dynamics Simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Mechanisms%20of%20Influenza%20Inhibition%20by%20Surfactant%20Protein%20D%20Revealed%20by%20Large-scale%20Molecular%20Dynamics%20Simulation&rft.jtitle=Biochemistry%20(Easton)&rft.au=Goh,%20Boon%20Chong&rft.date=2013-11-13&rft.volume=52&rft.issue=47&rft.spage=8527&rft.epage=8538&rft.pages=8527-8538&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi4010683&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_3927399%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24224757&rfr_iscdi=true |