Lymph node involvement in immunohistochemistry-based molecular classifications of breast cancer

Abstract Background Prognosis and treatment options differ for each molecular subtype of breast cancer, but risk of regional lymph node (LN) metastasis for each subtype has not been well studied. Since LN status is the most important predictor for prognosis, the aim of this study is to investigate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of surgical research 2013-12, Vol.185 (2), p.697-703
Hauptverfasser: Howland, Nicholas K., MD, Driver, Teryn D., BS, Sedrak, Michael P., MD, Wen, Xianfeng, MD, Dong, Wenli, MS, Hatch, Sandra, MD, Eltorky, Mahmoud A., MD, PhD, Chao, Celia, MD, FACS
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 703
container_issue 2
container_start_page 697
container_title The Journal of surgical research
container_volume 185
creator Howland, Nicholas K., MD
Driver, Teryn D., BS
Sedrak, Michael P., MD
Wen, Xianfeng, MD
Dong, Wenli, MS
Hatch, Sandra, MD
Eltorky, Mahmoud A., MD, PhD
Chao, Celia, MD, FACS
description Abstract Background Prognosis and treatment options differ for each molecular subtype of breast cancer, but risk of regional lymph node (LN) metastasis for each subtype has not been well studied. Since LN status is the most important predictor for prognosis, the aim of this study is to investigate the propensity for LN metastasis in each of the five breast cancer molecular subtypes. Methods Under an institutional review board–approved protocol, we retrospectively reviewed the charts of all pathologically confirmed breast cancer cases from January 2004 to June 2012. Five subtypes were defined as luminal A (hormone receptor positive, Ki-67 low), luminal B (hormone receptor positive, Ki-67 high), luminal human epidermal growth factor receptor 2 (HER2), HER2-enriched (hormone receptor negative), and triple negative (TN). Results A total of 375 patients with complete data were classified by subtype: 95 (25.3%) luminal A, 120 (32%) luminal B, 69 (18.4%) luminal HER2, 26 (6.9%) HER2-enriched, and 65 (17.3%) TN. On univariate analysis, age (
doi_str_mv 10.1016/j.jss.2013.06.048
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3923595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022480413006744</els_id><sourcerecordid>1458185283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-c84d58bf81cbc19e9116be6b10707aa5a90116780c9a003c515ba4f89bf600d13</originalsourceid><addsrcrecordid>eNp9UsuO1DAQtBCIHRY-gAvKkUtCO44TR0groRUvaSQOwLnlOB3Gg2MPdjLS_P16NMsKOHBqP6rK7qpm7CWHigNv3-yrfUpVDVxU0FbQqEdsw6GXpWo78ZhtAOq6bBQ0V-xZSnvI-74TT9lV3WQU1HLDcHuaD7vCh5EK64_BHWkmv-R1Yed59WFn0xLMjuZc46kcdKKxmIMjszodC-N0SnayRi82-FSEqRgi6bQURntD8Tl7MmmX6MV9vWbfP7z_dvup3H75-Pn23bY0EtqlNKoZpRomxc1geE895-1A7cChg05rqXvIJ50C02sAYSSXg24m1Q9TCzBycc1uLrqHdZhpNLmHqB0eop11PGHQFv--8XaHP8IRRV8L2css8PpeIIZfK6UFc8eGnNOewpqQN1JxJWslMpRfoCaGlCJND89wwHMwuMccDJ6DQWgxB5M5r_783wPjdxIZ8PYCoOzS0VLEZCxlC0cbySw4Bvtf-Zt_2MZZn1NxP-lEaR_W6LP9yDHVCPj1PBnnweACoO2aRtwB2vi2Qw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1458185283</pqid></control><display><type>article</type><title>Lymph node involvement in immunohistochemistry-based molecular classifications of breast cancer</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Howland, Nicholas K., MD ; Driver, Teryn D., BS ; Sedrak, Michael P., MD ; Wen, Xianfeng, MD ; Dong, Wenli, MS ; Hatch, Sandra, MD ; Eltorky, Mahmoud A., MD, PhD ; Chao, Celia, MD, FACS</creator><creatorcontrib>Howland, Nicholas K., MD ; Driver, Teryn D., BS ; Sedrak, Michael P., MD ; Wen, Xianfeng, MD ; Dong, Wenli, MS ; Hatch, Sandra, MD ; Eltorky, Mahmoud A., MD, PhD ; Chao, Celia, MD, FACS</creatorcontrib><description>Abstract Background Prognosis and treatment options differ for each molecular subtype of breast cancer, but risk of regional lymph node (LN) metastasis for each subtype has not been well studied. Since LN status is the most important predictor for prognosis, the aim of this study is to investigate the propensity for LN metastasis in each of the five breast cancer molecular subtypes. Methods Under an institutional review board–approved protocol, we retrospectively reviewed the charts of all pathologically confirmed breast cancer cases from January 2004 to June 2012. Five subtypes were defined as luminal A (hormone receptor positive, Ki-67 low), luminal B (hormone receptor positive, Ki-67 high), luminal human epidermal growth factor receptor 2 (HER2), HER2-enriched (hormone receptor negative), and triple negative (TN). Results A total of 375 patients with complete data were classified by subtype: 95 (25.3%) luminal A, 120 (32%) luminal B, 69 (18.4%) luminal HER2, 26 (6.9%) HER2-enriched, and 65 (17.3%) TN. On univariate analysis, age (&lt;50), higher tumor grade, HER2+ status, tumor size, and molecular subtype were significant for LN positivity. Molecular subtype correlated strongly with tumor size (χ2 ; P = 0.0004); therefore, multivariable logistic regression did not identify molecular subtype as an independent variable to predict LN positivity. Conclusions Luminal A tumors have the lowest risk of LN metastasis, whereas luminal HER2 subtype has the highest risk of LN metastasis. Immunohistochemical-based molecular classification can be readily performed and knowledge of the factors that affect LN status may help with treatment decisions.</description><identifier>ISSN: 0022-4804</identifier><identifier>EISSN: 1095-8673</identifier><identifier>DOI: 10.1016/j.jss.2013.06.048</identifier><identifier>PMID: 24095025</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biomarkers, Tumor - metabolism ; Breast Neoplasms - classification ; Breast Neoplasms - epidemiology ; Breast Neoplasms - secondary ; Female ; Humans ; Immunohistochemistry ; Immunohistochemistry - methods ; Ki-67 Antigen - metabolism ; Logistic Models ; Lymphatic Metastasis - pathology ; Middle Aged ; Molecular subtypes of breast cancer ; Multivariate Analysis ; Predictive Value of Tests ; Prognosis ; Receptor, Epidermal Growth Factor - metabolism ; Receptor, ErbB-2 - metabolism ; Retrospective Studies ; Risk Factors ; Surgery ; Triple Negative Breast Neoplasms - classification ; Triple Negative Breast Neoplasms - epidemiology ; Triple Negative Breast Neoplasms - secondary</subject><ispartof>The Journal of surgical research, 2013-12, Vol.185 (2), p.697-703</ispartof><rights>2013</rights><rights>Copyright © 2013. Published by Elsevier Inc.</rights><rights>2013 Published by Elsevier Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-c84d58bf81cbc19e9116be6b10707aa5a90116780c9a003c515ba4f89bf600d13</citedby><cites>FETCH-LOGICAL-c506t-c84d58bf81cbc19e9116be6b10707aa5a90116780c9a003c515ba4f89bf600d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022480413006744$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24095025$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Howland, Nicholas K., MD</creatorcontrib><creatorcontrib>Driver, Teryn D., BS</creatorcontrib><creatorcontrib>Sedrak, Michael P., MD</creatorcontrib><creatorcontrib>Wen, Xianfeng, MD</creatorcontrib><creatorcontrib>Dong, Wenli, MS</creatorcontrib><creatorcontrib>Hatch, Sandra, MD</creatorcontrib><creatorcontrib>Eltorky, Mahmoud A., MD, PhD</creatorcontrib><creatorcontrib>Chao, Celia, MD, FACS</creatorcontrib><title>Lymph node involvement in immunohistochemistry-based molecular classifications of breast cancer</title><title>The Journal of surgical research</title><addtitle>J Surg Res</addtitle><description>Abstract Background Prognosis and treatment options differ for each molecular subtype of breast cancer, but risk of regional lymph node (LN) metastasis for each subtype has not been well studied. Since LN status is the most important predictor for prognosis, the aim of this study is to investigate the propensity for LN metastasis in each of the five breast cancer molecular subtypes. Methods Under an institutional review board–approved protocol, we retrospectively reviewed the charts of all pathologically confirmed breast cancer cases from January 2004 to June 2012. Five subtypes were defined as luminal A (hormone receptor positive, Ki-67 low), luminal B (hormone receptor positive, Ki-67 high), luminal human epidermal growth factor receptor 2 (HER2), HER2-enriched (hormone receptor negative), and triple negative (TN). Results A total of 375 patients with complete data were classified by subtype: 95 (25.3%) luminal A, 120 (32%) luminal B, 69 (18.4%) luminal HER2, 26 (6.9%) HER2-enriched, and 65 (17.3%) TN. On univariate analysis, age (&lt;50), higher tumor grade, HER2+ status, tumor size, and molecular subtype were significant for LN positivity. Molecular subtype correlated strongly with tumor size (χ2 ; P = 0.0004); therefore, multivariable logistic regression did not identify molecular subtype as an independent variable to predict LN positivity. Conclusions Luminal A tumors have the lowest risk of LN metastasis, whereas luminal HER2 subtype has the highest risk of LN metastasis. Immunohistochemical-based molecular classification can be readily performed and knowledge of the factors that affect LN status may help with treatment decisions.</description><subject>Biomarkers, Tumor - metabolism</subject><subject>Breast Neoplasms - classification</subject><subject>Breast Neoplasms - epidemiology</subject><subject>Breast Neoplasms - secondary</subject><subject>Female</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Immunohistochemistry - methods</subject><subject>Ki-67 Antigen - metabolism</subject><subject>Logistic Models</subject><subject>Lymphatic Metastasis - pathology</subject><subject>Middle Aged</subject><subject>Molecular subtypes of breast cancer</subject><subject>Multivariate Analysis</subject><subject>Predictive Value of Tests</subject><subject>Prognosis</subject><subject>Receptor, Epidermal Growth Factor - metabolism</subject><subject>Receptor, ErbB-2 - metabolism</subject><subject>Retrospective Studies</subject><subject>Risk Factors</subject><subject>Surgery</subject><subject>Triple Negative Breast Neoplasms - classification</subject><subject>Triple Negative Breast Neoplasms - epidemiology</subject><subject>Triple Negative Breast Neoplasms - secondary</subject><issn>0022-4804</issn><issn>1095-8673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UsuO1DAQtBCIHRY-gAvKkUtCO44TR0groRUvaSQOwLnlOB3Gg2MPdjLS_P16NMsKOHBqP6rK7qpm7CWHigNv3-yrfUpVDVxU0FbQqEdsw6GXpWo78ZhtAOq6bBQ0V-xZSnvI-74TT9lV3WQU1HLDcHuaD7vCh5EK64_BHWkmv-R1Yed59WFn0xLMjuZc46kcdKKxmIMjszodC-N0SnayRi82-FSEqRgi6bQURntD8Tl7MmmX6MV9vWbfP7z_dvup3H75-Pn23bY0EtqlNKoZpRomxc1geE895-1A7cChg05rqXvIJ50C02sAYSSXg24m1Q9TCzBycc1uLrqHdZhpNLmHqB0eop11PGHQFv--8XaHP8IRRV8L2css8PpeIIZfK6UFc8eGnNOewpqQN1JxJWslMpRfoCaGlCJND89wwHMwuMccDJ6DQWgxB5M5r_783wPjdxIZ8PYCoOzS0VLEZCxlC0cbySw4Bvtf-Zt_2MZZn1NxP-lEaR_W6LP9yDHVCPj1PBnnweACoO2aRtwB2vi2Qw</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Howland, Nicholas K., MD</creator><creator>Driver, Teryn D., BS</creator><creator>Sedrak, Michael P., MD</creator><creator>Wen, Xianfeng, MD</creator><creator>Dong, Wenli, MS</creator><creator>Hatch, Sandra, MD</creator><creator>Eltorky, Mahmoud A., MD, PhD</creator><creator>Chao, Celia, MD, FACS</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131201</creationdate><title>Lymph node involvement in immunohistochemistry-based molecular classifications of breast cancer</title><author>Howland, Nicholas K., MD ; Driver, Teryn D., BS ; Sedrak, Michael P., MD ; Wen, Xianfeng, MD ; Dong, Wenli, MS ; Hatch, Sandra, MD ; Eltorky, Mahmoud A., MD, PhD ; Chao, Celia, MD, FACS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-c84d58bf81cbc19e9116be6b10707aa5a90116780c9a003c515ba4f89bf600d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biomarkers, Tumor - metabolism</topic><topic>Breast Neoplasms - classification</topic><topic>Breast Neoplasms - epidemiology</topic><topic>Breast Neoplasms - secondary</topic><topic>Female</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Immunohistochemistry - methods</topic><topic>Ki-67 Antigen - metabolism</topic><topic>Logistic Models</topic><topic>Lymphatic Metastasis - pathology</topic><topic>Middle Aged</topic><topic>Molecular subtypes of breast cancer</topic><topic>Multivariate Analysis</topic><topic>Predictive Value of Tests</topic><topic>Prognosis</topic><topic>Receptor, Epidermal Growth Factor - metabolism</topic><topic>Receptor, ErbB-2 - metabolism</topic><topic>Retrospective Studies</topic><topic>Risk Factors</topic><topic>Surgery</topic><topic>Triple Negative Breast Neoplasms - classification</topic><topic>Triple Negative Breast Neoplasms - epidemiology</topic><topic>Triple Negative Breast Neoplasms - secondary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howland, Nicholas K., MD</creatorcontrib><creatorcontrib>Driver, Teryn D., BS</creatorcontrib><creatorcontrib>Sedrak, Michael P., MD</creatorcontrib><creatorcontrib>Wen, Xianfeng, MD</creatorcontrib><creatorcontrib>Dong, Wenli, MS</creatorcontrib><creatorcontrib>Hatch, Sandra, MD</creatorcontrib><creatorcontrib>Eltorky, Mahmoud A., MD, PhD</creatorcontrib><creatorcontrib>Chao, Celia, MD, FACS</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of surgical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howland, Nicholas K., MD</au><au>Driver, Teryn D., BS</au><au>Sedrak, Michael P., MD</au><au>Wen, Xianfeng, MD</au><au>Dong, Wenli, MS</au><au>Hatch, Sandra, MD</au><au>Eltorky, Mahmoud A., MD, PhD</au><au>Chao, Celia, MD, FACS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lymph node involvement in immunohistochemistry-based molecular classifications of breast cancer</atitle><jtitle>The Journal of surgical research</jtitle><addtitle>J Surg Res</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>185</volume><issue>2</issue><spage>697</spage><epage>703</epage><pages>697-703</pages><issn>0022-4804</issn><eissn>1095-8673</eissn><abstract>Abstract Background Prognosis and treatment options differ for each molecular subtype of breast cancer, but risk of regional lymph node (LN) metastasis for each subtype has not been well studied. Since LN status is the most important predictor for prognosis, the aim of this study is to investigate the propensity for LN metastasis in each of the five breast cancer molecular subtypes. Methods Under an institutional review board–approved protocol, we retrospectively reviewed the charts of all pathologically confirmed breast cancer cases from January 2004 to June 2012. Five subtypes were defined as luminal A (hormone receptor positive, Ki-67 low), luminal B (hormone receptor positive, Ki-67 high), luminal human epidermal growth factor receptor 2 (HER2), HER2-enriched (hormone receptor negative), and triple negative (TN). Results A total of 375 patients with complete data were classified by subtype: 95 (25.3%) luminal A, 120 (32%) luminal B, 69 (18.4%) luminal HER2, 26 (6.9%) HER2-enriched, and 65 (17.3%) TN. On univariate analysis, age (&lt;50), higher tumor grade, HER2+ status, tumor size, and molecular subtype were significant for LN positivity. Molecular subtype correlated strongly with tumor size (χ2 ; P = 0.0004); therefore, multivariable logistic regression did not identify molecular subtype as an independent variable to predict LN positivity. Conclusions Luminal A tumors have the lowest risk of LN metastasis, whereas luminal HER2 subtype has the highest risk of LN metastasis. Immunohistochemical-based molecular classification can be readily performed and knowledge of the factors that affect LN status may help with treatment decisions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24095025</pmid><doi>10.1016/j.jss.2013.06.048</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4804
ispartof The Journal of surgical research, 2013-12, Vol.185 (2), p.697-703
issn 0022-4804
1095-8673
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3923595
source MEDLINE; Elsevier ScienceDirect Journals
subjects Biomarkers, Tumor - metabolism
Breast Neoplasms - classification
Breast Neoplasms - epidemiology
Breast Neoplasms - secondary
Female
Humans
Immunohistochemistry
Immunohistochemistry - methods
Ki-67 Antigen - metabolism
Logistic Models
Lymphatic Metastasis - pathology
Middle Aged
Molecular subtypes of breast cancer
Multivariate Analysis
Predictive Value of Tests
Prognosis
Receptor, Epidermal Growth Factor - metabolism
Receptor, ErbB-2 - metabolism
Retrospective Studies
Risk Factors
Surgery
Triple Negative Breast Neoplasms - classification
Triple Negative Breast Neoplasms - epidemiology
Triple Negative Breast Neoplasms - secondary
title Lymph node involvement in immunohistochemistry-based molecular classifications of breast cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lymph%20node%20involvement%20in%20immunohistochemistry-based%20molecular%20classifications%20of%20breast%20cancer&rft.jtitle=The%20Journal%20of%20surgical%20research&rft.au=Howland,%20Nicholas%20K.,%20MD&rft.date=2013-12-01&rft.volume=185&rft.issue=2&rft.spage=697&rft.epage=703&rft.pages=697-703&rft.issn=0022-4804&rft.eissn=1095-8673&rft_id=info:doi/10.1016/j.jss.2013.06.048&rft_dat=%3Cproquest_pubme%3E1458185283%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1458185283&rft_id=info:pmid/24095025&rft_els_id=S0022480413006744&rfr_iscdi=true