Structural basis of stereospecific reduction by quinuclidinone reductase
Chiral molecule ( R )-3-quinuclidinol, a valuable compound for the production of various pharmaceuticals, is efficiently synthesized from 3-quinuclidinone by using NADPH-dependent 3-quinuclidinone reductase (RrQR) from Rhodotorula rubra . Here, we report the crystal structure of RrQR and the structu...
Gespeichert in:
Veröffentlicht in: | AMB Express 2014-02, Vol.4 (1), p.6-6, Article 6 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 1 |
container_start_page | 6 |
container_title | AMB Express |
container_volume | 4 |
creator | Takeshita, Daijiro Kataoka, Michihiko Miyakawa, Takuya Miyazono, Ken-ichi Kumashiro, Shoko Nagai, Takahiro Urano, Nobuyuki Uzura, Atsuko Nagata, Koji Shimizu, Sakayu Tanokura, Masaru |
description | Chiral molecule (
R
)-3-quinuclidinol, a valuable compound for the production of various pharmaceuticals, is efficiently synthesized from 3-quinuclidinone by using NADPH-dependent 3-quinuclidinone reductase (RrQR) from
Rhodotorula rubra
. Here, we report the crystal structure of RrQR and the structure-based mutational analysis. The enzyme forms a tetramer, in which the core of each protomer exhibits the α/β Rossmann fold and contains one molecule of NADPH, whereas the characteristic substructures of a small lobe and a variable loop are localized around the substrate-binding site. Modeling and mutation analyses of the catalytic site indicated that the hydrophobicity of two residues, I167 and F212, determines the substrate-binding orientation as well as the substrate-binding affinity. Our results revealed that the characteristic substrate-binding pocket composed of hydrophobic amino acid residues ensures substrate docking for the stereospecific reaction of RrQR in spite of its loose interaction with the substrate. |
doi_str_mv | 10.1186/2191-0855-4-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3922912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1499136038</sourcerecordid><originalsourceid>FETCH-LOGICAL-b610t-e69922515a01587c1774eafb611a0a3ba1fc6c9ac38903bed5d95f6f0e555a263</originalsourceid><addsrcrecordid>eNqFkktLxDAUhYMoKjpLt1Jw46aaR5M2G1EGXyC4UNchTW810knGpBX892aYcZjxgdkk4XycezhchA4IPiGkEqeUSJLjivO8yMUG2l3-N1feO2gU4ytOh2MsBd9GO7TguCwLsYtuHvowmH4IustqHW3MfJvFHgL4OAVjW2uyAE1CrHdZ_ZG9DdYNprONdd7BQtMR9tFWq7sIo8W9h56uLh_HN_nd_fXt-OIurwXBfQ5CSko54RoTXpWGpBig2yQSjTWrNWmNMFIbVknMamh4I3krWgycc00F20Nnc9_pUE-gMeD6lF1Ng53o8KG8tmpdcfZFPft3xdJcSWgyOJ8b1Nb_YbCuGD9RszLVrExVqFmG40WG4N8GiL2a2Gig67QDP0RFSkYrVgrB_0cLKQkTmFUJPfqGvvohuFRmMiwZFphSnKh8TpngYwzQLpMTrGZL8SPr4WpfS_prBRJwMgdiktwzhJWxvzp-AjR1wYY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773060220</pqid></control><display><type>article</type><title>Structural basis of stereospecific reduction by quinuclidinone reductase</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Springer Nature - Complete Springer Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Takeshita, Daijiro ; Kataoka, Michihiko ; Miyakawa, Takuya ; Miyazono, Ken-ichi ; Kumashiro, Shoko ; Nagai, Takahiro ; Urano, Nobuyuki ; Uzura, Atsuko ; Nagata, Koji ; Shimizu, Sakayu ; Tanokura, Masaru</creator><creatorcontrib>Takeshita, Daijiro ; Kataoka, Michihiko ; Miyakawa, Takuya ; Miyazono, Ken-ichi ; Kumashiro, Shoko ; Nagai, Takahiro ; Urano, Nobuyuki ; Uzura, Atsuko ; Nagata, Koji ; Shimizu, Sakayu ; Tanokura, Masaru</creatorcontrib><description>Chiral molecule (
R
)-3-quinuclidinol, a valuable compound for the production of various pharmaceuticals, is efficiently synthesized from 3-quinuclidinone by using NADPH-dependent 3-quinuclidinone reductase (RrQR) from
Rhodotorula rubra
. Here, we report the crystal structure of RrQR and the structure-based mutational analysis. The enzyme forms a tetramer, in which the core of each protomer exhibits the α/β Rossmann fold and contains one molecule of NADPH, whereas the characteristic substructures of a small lobe and a variable loop are localized around the substrate-binding site. Modeling and mutation analyses of the catalytic site indicated that the hydrophobicity of two residues, I167 and F212, determines the substrate-binding orientation as well as the substrate-binding affinity. Our results revealed that the characteristic substrate-binding pocket composed of hydrophobic amino acid residues ensures substrate docking for the stereospecific reaction of RrQR in spite of its loose interaction with the substrate.</description><identifier>ISSN: 2191-0855</identifier><identifier>EISSN: 2191-0855</identifier><identifier>DOI: 10.1186/2191-0855-4-6</identifier><identifier>PMID: 24507746</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical and Life Sciences ; Biotechnology ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Original ; Original Article ; Rhodotorula rubra</subject><ispartof>AMB Express, 2014-02, Vol.4 (1), p.6-6, Article 6</ispartof><rights>Takeshita et al.; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.</rights><rights>The Author(s) 2014</rights><rights>Copyright © 2014 Takeshita et al.; licensee Springer. 2014 Takeshita et al.; licensee Springer.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b610t-e69922515a01587c1774eafb611a0a3ba1fc6c9ac38903bed5d95f6f0e555a263</citedby><cites>FETCH-LOGICAL-b610t-e69922515a01587c1774eafb611a0a3ba1fc6c9ac38903bed5d95f6f0e555a263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922912/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922912/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27911,27912,41107,41475,42176,42544,51306,51563,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24507746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takeshita, Daijiro</creatorcontrib><creatorcontrib>Kataoka, Michihiko</creatorcontrib><creatorcontrib>Miyakawa, Takuya</creatorcontrib><creatorcontrib>Miyazono, Ken-ichi</creatorcontrib><creatorcontrib>Kumashiro, Shoko</creatorcontrib><creatorcontrib>Nagai, Takahiro</creatorcontrib><creatorcontrib>Urano, Nobuyuki</creatorcontrib><creatorcontrib>Uzura, Atsuko</creatorcontrib><creatorcontrib>Nagata, Koji</creatorcontrib><creatorcontrib>Shimizu, Sakayu</creatorcontrib><creatorcontrib>Tanokura, Masaru</creatorcontrib><title>Structural basis of stereospecific reduction by quinuclidinone reductase</title><title>AMB Express</title><addtitle>AMB Expr</addtitle><addtitle>AMB Express</addtitle><description>Chiral molecule (
R
)-3-quinuclidinol, a valuable compound for the production of various pharmaceuticals, is efficiently synthesized from 3-quinuclidinone by using NADPH-dependent 3-quinuclidinone reductase (RrQR) from
Rhodotorula rubra
. Here, we report the crystal structure of RrQR and the structure-based mutational analysis. The enzyme forms a tetramer, in which the core of each protomer exhibits the α/β Rossmann fold and contains one molecule of NADPH, whereas the characteristic substructures of a small lobe and a variable loop are localized around the substrate-binding site. Modeling and mutation analyses of the catalytic site indicated that the hydrophobicity of two residues, I167 and F212, determines the substrate-binding orientation as well as the substrate-binding affinity. Our results revealed that the characteristic substrate-binding pocket composed of hydrophobic amino acid residues ensures substrate docking for the stereospecific reaction of RrQR in spite of its loose interaction with the substrate.</description><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Original</subject><subject>Original Article</subject><subject>Rhodotorula rubra</subject><issn>2191-0855</issn><issn>2191-0855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkktLxDAUhYMoKjpLt1Jw46aaR5M2G1EGXyC4UNchTW810knGpBX892aYcZjxgdkk4XycezhchA4IPiGkEqeUSJLjivO8yMUG2l3-N1feO2gU4ytOh2MsBd9GO7TguCwLsYtuHvowmH4IustqHW3MfJvFHgL4OAVjW2uyAE1CrHdZ_ZG9DdYNprONdd7BQtMR9tFWq7sIo8W9h56uLh_HN_nd_fXt-OIurwXBfQ5CSko54RoTXpWGpBig2yQSjTWrNWmNMFIbVknMamh4I3krWgycc00F20Nnc9_pUE-gMeD6lF1Ng53o8KG8tmpdcfZFPft3xdJcSWgyOJ8b1Nb_YbCuGD9RszLVrExVqFmG40WG4N8GiL2a2Gig67QDP0RFSkYrVgrB_0cLKQkTmFUJPfqGvvohuFRmMiwZFphSnKh8TpngYwzQLpMTrGZL8SPr4WpfS_prBRJwMgdiktwzhJWxvzp-AjR1wYY</recordid><startdate>20140207</startdate><enddate>20140207</enddate><creator>Takeshita, Daijiro</creator><creator>Kataoka, Michihiko</creator><creator>Miyakawa, Takuya</creator><creator>Miyazono, Ken-ichi</creator><creator>Kumashiro, Shoko</creator><creator>Nagai, Takahiro</creator><creator>Urano, Nobuyuki</creator><creator>Uzura, Atsuko</creator><creator>Nagata, Koji</creator><creator>Shimizu, Sakayu</creator><creator>Tanokura, Masaru</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>BioMed Central Ltd</general><general>Springer</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20140207</creationdate><title>Structural basis of stereospecific reduction by quinuclidinone reductase</title><author>Takeshita, Daijiro ; Kataoka, Michihiko ; Miyakawa, Takuya ; Miyazono, Ken-ichi ; Kumashiro, Shoko ; Nagai, Takahiro ; Urano, Nobuyuki ; Uzura, Atsuko ; Nagata, Koji ; Shimizu, Sakayu ; Tanokura, Masaru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b610t-e69922515a01587c1774eafb611a0a3ba1fc6c9ac38903bed5d95f6f0e555a263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Original</topic><topic>Original Article</topic><topic>Rhodotorula rubra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takeshita, Daijiro</creatorcontrib><creatorcontrib>Kataoka, Michihiko</creatorcontrib><creatorcontrib>Miyakawa, Takuya</creatorcontrib><creatorcontrib>Miyazono, Ken-ichi</creatorcontrib><creatorcontrib>Kumashiro, Shoko</creatorcontrib><creatorcontrib>Nagai, Takahiro</creatorcontrib><creatorcontrib>Urano, Nobuyuki</creatorcontrib><creatorcontrib>Uzura, Atsuko</creatorcontrib><creatorcontrib>Nagata, Koji</creatorcontrib><creatorcontrib>Shimizu, Sakayu</creatorcontrib><creatorcontrib>Tanokura, Masaru</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMB Express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takeshita, Daijiro</au><au>Kataoka, Michihiko</au><au>Miyakawa, Takuya</au><au>Miyazono, Ken-ichi</au><au>Kumashiro, Shoko</au><au>Nagai, Takahiro</au><au>Urano, Nobuyuki</au><au>Uzura, Atsuko</au><au>Nagata, Koji</au><au>Shimizu, Sakayu</au><au>Tanokura, Masaru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis of stereospecific reduction by quinuclidinone reductase</atitle><jtitle>AMB Express</jtitle><stitle>AMB Expr</stitle><addtitle>AMB Express</addtitle><date>2014-02-07</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>6</spage><epage>6</epage><pages>6-6</pages><artnum>6</artnum><issn>2191-0855</issn><eissn>2191-0855</eissn><abstract>Chiral molecule (
R
)-3-quinuclidinol, a valuable compound for the production of various pharmaceuticals, is efficiently synthesized from 3-quinuclidinone by using NADPH-dependent 3-quinuclidinone reductase (RrQR) from
Rhodotorula rubra
. Here, we report the crystal structure of RrQR and the structure-based mutational analysis. The enzyme forms a tetramer, in which the core of each protomer exhibits the α/β Rossmann fold and contains one molecule of NADPH, whereas the characteristic substructures of a small lobe and a variable loop are localized around the substrate-binding site. Modeling and mutation analyses of the catalytic site indicated that the hydrophobicity of two residues, I167 and F212, determines the substrate-binding orientation as well as the substrate-binding affinity. Our results revealed that the characteristic substrate-binding pocket composed of hydrophobic amino acid residues ensures substrate docking for the stereospecific reaction of RrQR in spite of its loose interaction with the substrate.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>24507746</pmid><doi>10.1186/2191-0855-4-6</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2191-0855 |
ispartof | AMB Express, 2014-02, Vol.4 (1), p.6-6, Article 6 |
issn | 2191-0855 2191-0855 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3922912 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Springer Nature - Complete Springer Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Biomedical and Life Sciences Biotechnology Life Sciences Microbial Genetics and Genomics Microbiology Original Original Article Rhodotorula rubra |
title | Structural basis of stereospecific reduction by quinuclidinone reductase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20of%20stereospecific%20reduction%20by%20quinuclidinone%20reductase&rft.jtitle=AMB%20Express&rft.au=Takeshita,%20Daijiro&rft.date=2014-02-07&rft.volume=4&rft.issue=1&rft.spage=6&rft.epage=6&rft.pages=6-6&rft.artnum=6&rft.issn=2191-0855&rft.eissn=2191-0855&rft_id=info:doi/10.1186/2191-0855-4-6&rft_dat=%3Cproquest_pubme%3E1499136038%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1773060220&rft_id=info:pmid/24507746&rfr_iscdi=true |