Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology
Accurate quantification of retinal layer thicknesses in mice as seen on optical coherence tomography (OCT) is crucial for the study of numerous ocular and neurological diseases. However, manual segmentation is time-consuming and subjective. Previous attempts to automate this process were limited to...
Gespeichert in:
Veröffentlicht in: | Biomedical optics express 2014-02, Vol.5 (2), p.348-365 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 365 |
---|---|
container_issue | 2 |
container_start_page | 348 |
container_title | Biomedical optics express |
container_volume | 5 |
creator | Srinivasan, Pratul P Heflin, Stephanie J Izatt, Joseph A Arshavsky, Vadim Y Farsiu, Sina |
description | Accurate quantification of retinal layer thicknesses in mice as seen on optical coherence tomography (OCT) is crucial for the study of numerous ocular and neurological diseases. However, manual segmentation is time-consuming and subjective. Previous attempts to automate this process were limited to high-quality scans from mice with no missing layers or visible pathology. This paper presents an automatic approach for segmenting retinal layers in spectral domain OCT images using sparsity based denoising, support vector machines, graph theory, and dynamic programming (S-GTDP). Results show that this method accurately segments all present retinal layer boundaries, which can range from seven to ten, in wild-type and rhodopsin knockout mice as compared to manual segmentation and has a more accurate performance as compared to the commercial automated Diver segmentation software. |
doi_str_mv | 10.1364/BOE.5.000348 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3920868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1503540720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-31b96b7c6d382a1d3e52a9b730b3f535b19ed6f855548e54406ddd2ea47b09693</originalsourceid><addsrcrecordid>eNpVkU1PxCAQhonRqNG9eTYcPdiVFujHxUTXz8RkD65nQsu0i2lhBarZv-CvFl01emLCPHln3nkROkrJNKU5O7ucX0_5lBBCWbmF9rOU50lBSr79p95DE--fI0MYKwgtd9FexnjBKc320fvFGOwgg26wh24AE2JtDbYtHlc4WBzA4F6uweHajkZJp8FjbfDjVTKfLbAeZBc_Ih6WgAc7esAOgjYSv-mwxNKor8KOAQ_ae226jZzHaoTPASsZu73t1odop5W9h8n3e4Cebq4Xs7vkYX57P7t4SJq4fkhoWld5XTS5omUmU0WBZ7KqC0pq2nLK67QClbcl55yVwBkjuVIqA8mKmlR5RQ_Q-UZ3NdYDqCZ6drIXKxe9uLWwUov_HaOXorOvglYZKfMyCpx8Czj7MoIPIjproO-lgXgAkXJCOSNFRiJ6ukEbZ7130P6OSYn4TFDEBAUXmwQjfvx3tV_4Jy_6Aa0PmKk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503540720</pqid></control><display><type>article</type><title>Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Srinivasan, Pratul P ; Heflin, Stephanie J ; Izatt, Joseph A ; Arshavsky, Vadim Y ; Farsiu, Sina</creator><creatorcontrib>Srinivasan, Pratul P ; Heflin, Stephanie J ; Izatt, Joseph A ; Arshavsky, Vadim Y ; Farsiu, Sina</creatorcontrib><description>Accurate quantification of retinal layer thicknesses in mice as seen on optical coherence tomography (OCT) is crucial for the study of numerous ocular and neurological diseases. However, manual segmentation is time-consuming and subjective. Previous attempts to automate this process were limited to high-quality scans from mice with no missing layers or visible pathology. This paper presents an automatic approach for segmenting retinal layers in spectral domain OCT images using sparsity based denoising, support vector machines, graph theory, and dynamic programming (S-GTDP). Results show that this method accurately segments all present retinal layer boundaries, which can range from seven to ten, in wild-type and rhodopsin knockout mice as compared to manual segmentation and has a more accurate performance as compared to the commercial automated Diver segmentation software.</description><identifier>ISSN: 2156-7085</identifier><identifier>EISSN: 2156-7085</identifier><identifier>DOI: 10.1364/BOE.5.000348</identifier><identifier>PMID: 24575332</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Image Processing</subject><ispartof>Biomedical optics express, 2014-02, Vol.5 (2), p.348-365</ispartof><rights>2014 Optical Society of America 2014 Optical Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-31b96b7c6d382a1d3e52a9b730b3f535b19ed6f855548e54406ddd2ea47b09693</citedby><cites>FETCH-LOGICAL-c470t-31b96b7c6d382a1d3e52a9b730b3f535b19ed6f855548e54406ddd2ea47b09693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920868/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920868/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24575332$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Srinivasan, Pratul P</creatorcontrib><creatorcontrib>Heflin, Stephanie J</creatorcontrib><creatorcontrib>Izatt, Joseph A</creatorcontrib><creatorcontrib>Arshavsky, Vadim Y</creatorcontrib><creatorcontrib>Farsiu, Sina</creatorcontrib><title>Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology</title><title>Biomedical optics express</title><addtitle>Biomed Opt Express</addtitle><description>Accurate quantification of retinal layer thicknesses in mice as seen on optical coherence tomography (OCT) is crucial for the study of numerous ocular and neurological diseases. However, manual segmentation is time-consuming and subjective. Previous attempts to automate this process were limited to high-quality scans from mice with no missing layers or visible pathology. This paper presents an automatic approach for segmenting retinal layers in spectral domain OCT images using sparsity based denoising, support vector machines, graph theory, and dynamic programming (S-GTDP). Results show that this method accurately segments all present retinal layer boundaries, which can range from seven to ten, in wild-type and rhodopsin knockout mice as compared to manual segmentation and has a more accurate performance as compared to the commercial automated Diver segmentation software.</description><subject>Image Processing</subject><issn>2156-7085</issn><issn>2156-7085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpVkU1PxCAQhonRqNG9eTYcPdiVFujHxUTXz8RkD65nQsu0i2lhBarZv-CvFl01emLCPHln3nkROkrJNKU5O7ucX0_5lBBCWbmF9rOU50lBSr79p95DE--fI0MYKwgtd9FexnjBKc320fvFGOwgg26wh24AE2JtDbYtHlc4WBzA4F6uweHajkZJp8FjbfDjVTKfLbAeZBc_Ih6WgAc7esAOgjYSv-mwxNKor8KOAQ_ae226jZzHaoTPASsZu73t1odop5W9h8n3e4Cebq4Xs7vkYX57P7t4SJq4fkhoWld5XTS5omUmU0WBZ7KqC0pq2nLK67QClbcl55yVwBkjuVIqA8mKmlR5RQ_Q-UZ3NdYDqCZ6drIXKxe9uLWwUov_HaOXorOvglYZKfMyCpx8Czj7MoIPIjproO-lgXgAkXJCOSNFRiJ6ukEbZ7130P6OSYn4TFDEBAUXmwQjfvx3tV_4Jy_6Aa0PmKk</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Srinivasan, Pratul P</creator><creator>Heflin, Stephanie J</creator><creator>Izatt, Joseph A</creator><creator>Arshavsky, Vadim Y</creator><creator>Farsiu, Sina</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140201</creationdate><title>Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology</title><author>Srinivasan, Pratul P ; Heflin, Stephanie J ; Izatt, Joseph A ; Arshavsky, Vadim Y ; Farsiu, Sina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-31b96b7c6d382a1d3e52a9b730b3f535b19ed6f855548e54406ddd2ea47b09693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Image Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srinivasan, Pratul P</creatorcontrib><creatorcontrib>Heflin, Stephanie J</creatorcontrib><creatorcontrib>Izatt, Joseph A</creatorcontrib><creatorcontrib>Arshavsky, Vadim Y</creatorcontrib><creatorcontrib>Farsiu, Sina</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srinivasan, Pratul P</au><au>Heflin, Stephanie J</au><au>Izatt, Joseph A</au><au>Arshavsky, Vadim Y</au><au>Farsiu, Sina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology</atitle><jtitle>Biomedical optics express</jtitle><addtitle>Biomed Opt Express</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>5</volume><issue>2</issue><spage>348</spage><epage>365</epage><pages>348-365</pages><issn>2156-7085</issn><eissn>2156-7085</eissn><abstract>Accurate quantification of retinal layer thicknesses in mice as seen on optical coherence tomography (OCT) is crucial for the study of numerous ocular and neurological diseases. However, manual segmentation is time-consuming and subjective. Previous attempts to automate this process were limited to high-quality scans from mice with no missing layers or visible pathology. This paper presents an automatic approach for segmenting retinal layers in spectral domain OCT images using sparsity based denoising, support vector machines, graph theory, and dynamic programming (S-GTDP). Results show that this method accurately segments all present retinal layer boundaries, which can range from seven to ten, in wild-type and rhodopsin knockout mice as compared to manual segmentation and has a more accurate performance as compared to the commercial automated Diver segmentation software.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>24575332</pmid><doi>10.1364/BOE.5.000348</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-7085 |
ispartof | Biomedical optics express, 2014-02, Vol.5 (2), p.348-365 |
issn | 2156-7085 2156-7085 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3920868 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Image Processing |
title | Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A48%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20segmentation%20of%20up%20to%20ten%20layer%20boundaries%20in%20SD-OCT%20images%20of%20the%20mouse%20retina%20with%20and%20without%20missing%20layers%20due%20to%20pathology&rft.jtitle=Biomedical%20optics%20express&rft.au=Srinivasan,%20Pratul%20P&rft.date=2014-02-01&rft.volume=5&rft.issue=2&rft.spage=348&rft.epage=365&rft.pages=348-365&rft.issn=2156-7085&rft.eissn=2156-7085&rft_id=info:doi/10.1364/BOE.5.000348&rft_dat=%3Cproquest_pubme%3E1503540720%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503540720&rft_id=info:pmid/24575332&rfr_iscdi=true |