Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology

Accurate quantification of retinal layer thicknesses in mice as seen on optical coherence tomography (OCT) is crucial for the study of numerous ocular and neurological diseases. However, manual segmentation is time-consuming and subjective. Previous attempts to automate this process were limited to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical optics express 2014-02, Vol.5 (2), p.348-365
Hauptverfasser: Srinivasan, Pratul P, Heflin, Stephanie J, Izatt, Joseph A, Arshavsky, Vadim Y, Farsiu, Sina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 365
container_issue 2
container_start_page 348
container_title Biomedical optics express
container_volume 5
creator Srinivasan, Pratul P
Heflin, Stephanie J
Izatt, Joseph A
Arshavsky, Vadim Y
Farsiu, Sina
description Accurate quantification of retinal layer thicknesses in mice as seen on optical coherence tomography (OCT) is crucial for the study of numerous ocular and neurological diseases. However, manual segmentation is time-consuming and subjective. Previous attempts to automate this process were limited to high-quality scans from mice with no missing layers or visible pathology. This paper presents an automatic approach for segmenting retinal layers in spectral domain OCT images using sparsity based denoising, support vector machines, graph theory, and dynamic programming (S-GTDP). Results show that this method accurately segments all present retinal layer boundaries, which can range from seven to ten, in wild-type and rhodopsin knockout mice as compared to manual segmentation and has a more accurate performance as compared to the commercial automated Diver segmentation software.
doi_str_mv 10.1364/BOE.5.000348
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3920868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1503540720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-31b96b7c6d382a1d3e52a9b730b3f535b19ed6f855548e54406ddd2ea47b09693</originalsourceid><addsrcrecordid>eNpVkU1PxCAQhonRqNG9eTYcPdiVFujHxUTXz8RkD65nQsu0i2lhBarZv-CvFl01emLCPHln3nkROkrJNKU5O7ucX0_5lBBCWbmF9rOU50lBSr79p95DE--fI0MYKwgtd9FexnjBKc320fvFGOwgg26wh24AE2JtDbYtHlc4WBzA4F6uweHajkZJp8FjbfDjVTKfLbAeZBc_Ih6WgAc7esAOgjYSv-mwxNKor8KOAQ_ae226jZzHaoTPASsZu73t1odop5W9h8n3e4Cebq4Xs7vkYX57P7t4SJq4fkhoWld5XTS5omUmU0WBZ7KqC0pq2nLK67QClbcl55yVwBkjuVIqA8mKmlR5RQ_Q-UZ3NdYDqCZ6drIXKxe9uLWwUov_HaOXorOvglYZKfMyCpx8Czj7MoIPIjproO-lgXgAkXJCOSNFRiJ6ukEbZ7130P6OSYn4TFDEBAUXmwQjfvx3tV_4Jy_6Aa0PmKk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503540720</pqid></control><display><type>article</type><title>Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Srinivasan, Pratul P ; Heflin, Stephanie J ; Izatt, Joseph A ; Arshavsky, Vadim Y ; Farsiu, Sina</creator><creatorcontrib>Srinivasan, Pratul P ; Heflin, Stephanie J ; Izatt, Joseph A ; Arshavsky, Vadim Y ; Farsiu, Sina</creatorcontrib><description>Accurate quantification of retinal layer thicknesses in mice as seen on optical coherence tomography (OCT) is crucial for the study of numerous ocular and neurological diseases. However, manual segmentation is time-consuming and subjective. Previous attempts to automate this process were limited to high-quality scans from mice with no missing layers or visible pathology. This paper presents an automatic approach for segmenting retinal layers in spectral domain OCT images using sparsity based denoising, support vector machines, graph theory, and dynamic programming (S-GTDP). Results show that this method accurately segments all present retinal layer boundaries, which can range from seven to ten, in wild-type and rhodopsin knockout mice as compared to manual segmentation and has a more accurate performance as compared to the commercial automated Diver segmentation software.</description><identifier>ISSN: 2156-7085</identifier><identifier>EISSN: 2156-7085</identifier><identifier>DOI: 10.1364/BOE.5.000348</identifier><identifier>PMID: 24575332</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Image Processing</subject><ispartof>Biomedical optics express, 2014-02, Vol.5 (2), p.348-365</ispartof><rights>2014 Optical Society of America 2014 Optical Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-31b96b7c6d382a1d3e52a9b730b3f535b19ed6f855548e54406ddd2ea47b09693</citedby><cites>FETCH-LOGICAL-c470t-31b96b7c6d382a1d3e52a9b730b3f535b19ed6f855548e54406ddd2ea47b09693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920868/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920868/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24575332$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Srinivasan, Pratul P</creatorcontrib><creatorcontrib>Heflin, Stephanie J</creatorcontrib><creatorcontrib>Izatt, Joseph A</creatorcontrib><creatorcontrib>Arshavsky, Vadim Y</creatorcontrib><creatorcontrib>Farsiu, Sina</creatorcontrib><title>Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology</title><title>Biomedical optics express</title><addtitle>Biomed Opt Express</addtitle><description>Accurate quantification of retinal layer thicknesses in mice as seen on optical coherence tomography (OCT) is crucial for the study of numerous ocular and neurological diseases. However, manual segmentation is time-consuming and subjective. Previous attempts to automate this process were limited to high-quality scans from mice with no missing layers or visible pathology. This paper presents an automatic approach for segmenting retinal layers in spectral domain OCT images using sparsity based denoising, support vector machines, graph theory, and dynamic programming (S-GTDP). Results show that this method accurately segments all present retinal layer boundaries, which can range from seven to ten, in wild-type and rhodopsin knockout mice as compared to manual segmentation and has a more accurate performance as compared to the commercial automated Diver segmentation software.</description><subject>Image Processing</subject><issn>2156-7085</issn><issn>2156-7085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpVkU1PxCAQhonRqNG9eTYcPdiVFujHxUTXz8RkD65nQsu0i2lhBarZv-CvFl01emLCPHln3nkROkrJNKU5O7ucX0_5lBBCWbmF9rOU50lBSr79p95DE--fI0MYKwgtd9FexnjBKc320fvFGOwgg26wh24AE2JtDbYtHlc4WBzA4F6uweHajkZJp8FjbfDjVTKfLbAeZBc_Ih6WgAc7esAOgjYSv-mwxNKor8KOAQ_ae226jZzHaoTPASsZu73t1odop5W9h8n3e4Cebq4Xs7vkYX57P7t4SJq4fkhoWld5XTS5omUmU0WBZ7KqC0pq2nLK67QClbcl55yVwBkjuVIqA8mKmlR5RQ_Q-UZ3NdYDqCZ6drIXKxe9uLWwUov_HaOXorOvglYZKfMyCpx8Czj7MoIPIjproO-lgXgAkXJCOSNFRiJ6ukEbZ7130P6OSYn4TFDEBAUXmwQjfvx3tV_4Jy_6Aa0PmKk</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Srinivasan, Pratul P</creator><creator>Heflin, Stephanie J</creator><creator>Izatt, Joseph A</creator><creator>Arshavsky, Vadim Y</creator><creator>Farsiu, Sina</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140201</creationdate><title>Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology</title><author>Srinivasan, Pratul P ; Heflin, Stephanie J ; Izatt, Joseph A ; Arshavsky, Vadim Y ; Farsiu, Sina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-31b96b7c6d382a1d3e52a9b730b3f535b19ed6f855548e54406ddd2ea47b09693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Image Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srinivasan, Pratul P</creatorcontrib><creatorcontrib>Heflin, Stephanie J</creatorcontrib><creatorcontrib>Izatt, Joseph A</creatorcontrib><creatorcontrib>Arshavsky, Vadim Y</creatorcontrib><creatorcontrib>Farsiu, Sina</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srinivasan, Pratul P</au><au>Heflin, Stephanie J</au><au>Izatt, Joseph A</au><au>Arshavsky, Vadim Y</au><au>Farsiu, Sina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology</atitle><jtitle>Biomedical optics express</jtitle><addtitle>Biomed Opt Express</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>5</volume><issue>2</issue><spage>348</spage><epage>365</epage><pages>348-365</pages><issn>2156-7085</issn><eissn>2156-7085</eissn><abstract>Accurate quantification of retinal layer thicknesses in mice as seen on optical coherence tomography (OCT) is crucial for the study of numerous ocular and neurological diseases. However, manual segmentation is time-consuming and subjective. Previous attempts to automate this process were limited to high-quality scans from mice with no missing layers or visible pathology. This paper presents an automatic approach for segmenting retinal layers in spectral domain OCT images using sparsity based denoising, support vector machines, graph theory, and dynamic programming (S-GTDP). Results show that this method accurately segments all present retinal layer boundaries, which can range from seven to ten, in wild-type and rhodopsin knockout mice as compared to manual segmentation and has a more accurate performance as compared to the commercial automated Diver segmentation software.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>24575332</pmid><doi>10.1364/BOE.5.000348</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2156-7085
ispartof Biomedical optics express, 2014-02, Vol.5 (2), p.348-365
issn 2156-7085
2156-7085
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3920868
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Image Processing
title Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A48%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20segmentation%20of%20up%20to%20ten%20layer%20boundaries%20in%20SD-OCT%20images%20of%20the%20mouse%20retina%20with%20and%20without%20missing%20layers%20due%20to%20pathology&rft.jtitle=Biomedical%20optics%20express&rft.au=Srinivasan,%20Pratul%20P&rft.date=2014-02-01&rft.volume=5&rft.issue=2&rft.spage=348&rft.epage=365&rft.pages=348-365&rft.issn=2156-7085&rft.eissn=2156-7085&rft_id=info:doi/10.1364/BOE.5.000348&rft_dat=%3Cproquest_pubme%3E1503540720%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503540720&rft_id=info:pmid/24575332&rfr_iscdi=true