The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model
In the past decade, the cell-type specific connectivity and activity of local cortical networks have been characterized experimentally to some detail. In parallel, modeling has been established as a tool to relate network structure to activity dynamics. While available comprehensive connectivity map...
Gespeichert in:
Veröffentlicht in: | Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2014-03, Vol.24 (3), p.785-806 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 806 |
---|---|
container_issue | 3 |
container_start_page | 785 |
container_title | Cerebral cortex (New York, N.Y. 1991) |
container_volume | 24 |
creator | Potjans, Tobias C Diesmann, Markus |
description | In the past decade, the cell-type specific connectivity and activity of local cortical networks have been characterized experimentally to some detail. In parallel, modeling has been established as a tool to relate network structure to activity dynamics. While available comprehensive connectivity maps ( Thomson, West, et al. 2002; Binzegger et al. 2004) have been used in various computational studies, prominent features of the simulated activity such as the spontaneous firing rates do not match the experimental findings. Here, we analyze the properties of these maps to compile an integrated connectivity map, which additionally incorporates insights on the specific selection of target types. Based on this integrated map, we build a full-scale spiking network model of the local cortical microcircuit. The simulated spontaneous activity is asynchronous irregular and cell-type specific firing rates are in agreement with in vivo recordings in awake animals, including the low rate of layer 2/3 excitatory cells. The interplay of excitation and inhibition captures the flow of activity through cortical layers after transient thalamic stimulation. In conclusion, the integration of a large body of the available connectivity data enables us to expose the dynamical consequences of the cortical microcircuitry. |
doi_str_mv | 10.1093/cercor/bhs358 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3920768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1505348211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-c7d7da706b874f7196a384941ddeb9f20ef9dc8a48f41f8de922f52c20d775fd3</originalsourceid><addsrcrecordid>eNqFkU1PXCEUhompqVa7dNuw7OZWvu4FumjSmKpNTNyMa8LAwUHvxxS4Y-bfl8mMpq664iQ8PDm8L0IXlHyjRPNLB8lN6XK5yrxVR-iUio40jGr9oc5EyIYzSk_Qp5yfCKGStewjOmGcEa41PUV5sQLsoO-bsl0DzmtwMUSHq7NEZ3s8RJcmF5ObY_mOE_S2xPER55JmV-YE2I4eW1fiJpYtjiO2OMxVl-vjnS8-7_ARysuUnvEweejP0XGwfYbPh_MMPVz_WlzdNnf3N7-vft41TqiuNE566a0k3VJJESTVneVKaEG9h6UOjEDQ3ikrVBA0KA-asdAyx4iXsg2en6Efe-96Xg7gHYwl2d6sUxxs2prJRvP-Zowr8zhtDNeMyE5VwdeDIE1_ZsjFDDHvwrIjTHM2tCUtF6oG_H9U1Lh51ypd0WaP1mBzThDeNqLE7Do1-07NvtPKf_n3G2_0a4n8L__Uosc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499136589</pqid></control><display><type>article</type><title>The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Potjans, Tobias C ; Diesmann, Markus</creator><creatorcontrib>Potjans, Tobias C ; Diesmann, Markus</creatorcontrib><description>In the past decade, the cell-type specific connectivity and activity of local cortical networks have been characterized experimentally to some detail. In parallel, modeling has been established as a tool to relate network structure to activity dynamics. While available comprehensive connectivity maps ( Thomson, West, et al. 2002; Binzegger et al. 2004) have been used in various computational studies, prominent features of the simulated activity such as the spontaneous firing rates do not match the experimental findings. Here, we analyze the properties of these maps to compile an integrated connectivity map, which additionally incorporates insights on the specific selection of target types. Based on this integrated map, we build a full-scale spiking network model of the local cortical microcircuit. The simulated spontaneous activity is asynchronous irregular and cell-type specific firing rates are in agreement with in vivo recordings in awake animals, including the low rate of layer 2/3 excitatory cells. The interplay of excitation and inhibition captures the flow of activity through cortical layers after transient thalamic stimulation. In conclusion, the integration of a large body of the available connectivity data enables us to expose the dynamical consequences of the cortical microcircuitry.</description><identifier>ISSN: 1047-3211</identifier><identifier>EISSN: 1460-2199</identifier><identifier>DOI: 10.1093/cercor/bhs358</identifier><identifier>PMID: 23203991</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Action Potentials - physiology ; Cerebral Cortex - cytology ; Computer Simulation ; Humans ; Models, Neurological ; Nerve Net - cytology ; Nerve Net - physiology ; Neural Inhibition ; Neural Networks (Computer) ; Neural Pathways ; Neurons - classification ; Neurons - physiology</subject><ispartof>Cerebral cortex (New York, N.Y. 1991), 2014-03, Vol.24 (3), p.785-806</ispartof><rights>The Author 2012. Published by Oxford University Press. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-c7d7da706b874f7196a384941ddeb9f20ef9dc8a48f41f8de922f52c20d775fd3</citedby><cites>FETCH-LOGICAL-c486t-c7d7da706b874f7196a384941ddeb9f20ef9dc8a48f41f8de922f52c20d775fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23203991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Potjans, Tobias C</creatorcontrib><creatorcontrib>Diesmann, Markus</creatorcontrib><title>The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model</title><title>Cerebral cortex (New York, N.Y. 1991)</title><addtitle>Cereb Cortex</addtitle><description>In the past decade, the cell-type specific connectivity and activity of local cortical networks have been characterized experimentally to some detail. In parallel, modeling has been established as a tool to relate network structure to activity dynamics. While available comprehensive connectivity maps ( Thomson, West, et al. 2002; Binzegger et al. 2004) have been used in various computational studies, prominent features of the simulated activity such as the spontaneous firing rates do not match the experimental findings. Here, we analyze the properties of these maps to compile an integrated connectivity map, which additionally incorporates insights on the specific selection of target types. Based on this integrated map, we build a full-scale spiking network model of the local cortical microcircuit. The simulated spontaneous activity is asynchronous irregular and cell-type specific firing rates are in agreement with in vivo recordings in awake animals, including the low rate of layer 2/3 excitatory cells. The interplay of excitation and inhibition captures the flow of activity through cortical layers after transient thalamic stimulation. In conclusion, the integration of a large body of the available connectivity data enables us to expose the dynamical consequences of the cortical microcircuitry.</description><subject>Action Potentials - physiology</subject><subject>Cerebral Cortex - cytology</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Nerve Net - cytology</subject><subject>Nerve Net - physiology</subject><subject>Neural Inhibition</subject><subject>Neural Networks (Computer)</subject><subject>Neural Pathways</subject><subject>Neurons - classification</subject><subject>Neurons - physiology</subject><issn>1047-3211</issn><issn>1460-2199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1PXCEUhompqVa7dNuw7OZWvu4FumjSmKpNTNyMa8LAwUHvxxS4Y-bfl8mMpq664iQ8PDm8L0IXlHyjRPNLB8lN6XK5yrxVR-iUio40jGr9oc5EyIYzSk_Qp5yfCKGStewjOmGcEa41PUV5sQLsoO-bsl0DzmtwMUSHq7NEZ3s8RJcmF5ObY_mOE_S2xPER55JmV-YE2I4eW1fiJpYtjiO2OMxVl-vjnS8-7_ARysuUnvEweejP0XGwfYbPh_MMPVz_WlzdNnf3N7-vft41TqiuNE566a0k3VJJESTVneVKaEG9h6UOjEDQ3ikrVBA0KA-asdAyx4iXsg2en6Efe-96Xg7gHYwl2d6sUxxs2prJRvP-Zowr8zhtDNeMyE5VwdeDIE1_ZsjFDDHvwrIjTHM2tCUtF6oG_H9U1Lh51ypd0WaP1mBzThDeNqLE7Do1-07NvtPKf_n3G2_0a4n8L__Uosc</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Potjans, Tobias C</creator><creator>Diesmann, Markus</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QG</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20140301</creationdate><title>The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model</title><author>Potjans, Tobias C ; Diesmann, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-c7d7da706b874f7196a384941ddeb9f20ef9dc8a48f41f8de922f52c20d775fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Action Potentials - physiology</topic><topic>Cerebral Cortex - cytology</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Nerve Net - cytology</topic><topic>Nerve Net - physiology</topic><topic>Neural Inhibition</topic><topic>Neural Networks (Computer)</topic><topic>Neural Pathways</topic><topic>Neurons - classification</topic><topic>Neurons - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Potjans, Tobias C</creatorcontrib><creatorcontrib>Diesmann, Markus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Potjans, Tobias C</au><au>Diesmann, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model</atitle><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle><addtitle>Cereb Cortex</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>24</volume><issue>3</issue><spage>785</spage><epage>806</epage><pages>785-806</pages><issn>1047-3211</issn><eissn>1460-2199</eissn><abstract>In the past decade, the cell-type specific connectivity and activity of local cortical networks have been characterized experimentally to some detail. In parallel, modeling has been established as a tool to relate network structure to activity dynamics. While available comprehensive connectivity maps ( Thomson, West, et al. 2002; Binzegger et al. 2004) have been used in various computational studies, prominent features of the simulated activity such as the spontaneous firing rates do not match the experimental findings. Here, we analyze the properties of these maps to compile an integrated connectivity map, which additionally incorporates insights on the specific selection of target types. Based on this integrated map, we build a full-scale spiking network model of the local cortical microcircuit. The simulated spontaneous activity is asynchronous irregular and cell-type specific firing rates are in agreement with in vivo recordings in awake animals, including the low rate of layer 2/3 excitatory cells. The interplay of excitation and inhibition captures the flow of activity through cortical layers after transient thalamic stimulation. In conclusion, the integration of a large body of the available connectivity data enables us to expose the dynamical consequences of the cortical microcircuitry.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>23203991</pmid><doi>10.1093/cercor/bhs358</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-3211 |
ispartof | Cerebral cortex (New York, N.Y. 1991), 2014-03, Vol.24 (3), p.785-806 |
issn | 1047-3211 1460-2199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3920768 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Action Potentials - physiology Cerebral Cortex - cytology Computer Simulation Humans Models, Neurological Nerve Net - cytology Nerve Net - physiology Neural Inhibition Neural Networks (Computer) Neural Pathways Neurons - classification Neurons - physiology |
title | The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A42%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20cell-type%20specific%20cortical%20microcircuit:%20relating%20structure%20and%20activity%20in%20a%20full-scale%20spiking%20network%20model&rft.jtitle=Cerebral%20cortex%20(New%20York,%20N.Y.%201991)&rft.au=Potjans,%20Tobias%20C&rft.date=2014-03-01&rft.volume=24&rft.issue=3&rft.spage=785&rft.epage=806&rft.pages=785-806&rft.issn=1047-3211&rft.eissn=1460-2199&rft_id=info:doi/10.1093/cercor/bhs358&rft_dat=%3Cproquest_pubme%3E1505348211%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499136589&rft_id=info:pmid/23203991&rfr_iscdi=true |