The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model

In the past decade, the cell-type specific connectivity and activity of local cortical networks have been characterized experimentally to some detail. In parallel, modeling has been established as a tool to relate network structure to activity dynamics. While available comprehensive connectivity map...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2014-03, Vol.24 (3), p.785-806
Hauptverfasser: Potjans, Tobias C, Diesmann, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 806
container_issue 3
container_start_page 785
container_title Cerebral cortex (New York, N.Y. 1991)
container_volume 24
creator Potjans, Tobias C
Diesmann, Markus
description In the past decade, the cell-type specific connectivity and activity of local cortical networks have been characterized experimentally to some detail. In parallel, modeling has been established as a tool to relate network structure to activity dynamics. While available comprehensive connectivity maps ( Thomson, West, et al. 2002; Binzegger et al. 2004) have been used in various computational studies, prominent features of the simulated activity such as the spontaneous firing rates do not match the experimental findings. Here, we analyze the properties of these maps to compile an integrated connectivity map, which additionally incorporates insights on the specific selection of target types. Based on this integrated map, we build a full-scale spiking network model of the local cortical microcircuit. The simulated spontaneous activity is asynchronous irregular and cell-type specific firing rates are in agreement with in vivo recordings in awake animals, including the low rate of layer 2/3 excitatory cells. The interplay of excitation and inhibition captures the flow of activity through cortical layers after transient thalamic stimulation. In conclusion, the integration of a large body of the available connectivity data enables us to expose the dynamical consequences of the cortical microcircuitry.
doi_str_mv 10.1093/cercor/bhs358
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3920768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1505348211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-c7d7da706b874f7196a384941ddeb9f20ef9dc8a48f41f8de922f52c20d775fd3</originalsourceid><addsrcrecordid>eNqFkU1PXCEUhompqVa7dNuw7OZWvu4FumjSmKpNTNyMa8LAwUHvxxS4Y-bfl8mMpq664iQ8PDm8L0IXlHyjRPNLB8lN6XK5yrxVR-iUio40jGr9oc5EyIYzSk_Qp5yfCKGStewjOmGcEa41PUV5sQLsoO-bsl0DzmtwMUSHq7NEZ3s8RJcmF5ObY_mOE_S2xPER55JmV-YE2I4eW1fiJpYtjiO2OMxVl-vjnS8-7_ARysuUnvEweejP0XGwfYbPh_MMPVz_WlzdNnf3N7-vft41TqiuNE566a0k3VJJESTVneVKaEG9h6UOjEDQ3ikrVBA0KA-asdAyx4iXsg2en6Efe-96Xg7gHYwl2d6sUxxs2prJRvP-Zowr8zhtDNeMyE5VwdeDIE1_ZsjFDDHvwrIjTHM2tCUtF6oG_H9U1Lh51ypd0WaP1mBzThDeNqLE7Do1-07NvtPKf_n3G2_0a4n8L__Uosc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499136589</pqid></control><display><type>article</type><title>The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Potjans, Tobias C ; Diesmann, Markus</creator><creatorcontrib>Potjans, Tobias C ; Diesmann, Markus</creatorcontrib><description>In the past decade, the cell-type specific connectivity and activity of local cortical networks have been characterized experimentally to some detail. In parallel, modeling has been established as a tool to relate network structure to activity dynamics. While available comprehensive connectivity maps ( Thomson, West, et al. 2002; Binzegger et al. 2004) have been used in various computational studies, prominent features of the simulated activity such as the spontaneous firing rates do not match the experimental findings. Here, we analyze the properties of these maps to compile an integrated connectivity map, which additionally incorporates insights on the specific selection of target types. Based on this integrated map, we build a full-scale spiking network model of the local cortical microcircuit. The simulated spontaneous activity is asynchronous irregular and cell-type specific firing rates are in agreement with in vivo recordings in awake animals, including the low rate of layer 2/3 excitatory cells. The interplay of excitation and inhibition captures the flow of activity through cortical layers after transient thalamic stimulation. In conclusion, the integration of a large body of the available connectivity data enables us to expose the dynamical consequences of the cortical microcircuitry.</description><identifier>ISSN: 1047-3211</identifier><identifier>EISSN: 1460-2199</identifier><identifier>DOI: 10.1093/cercor/bhs358</identifier><identifier>PMID: 23203991</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Action Potentials - physiology ; Cerebral Cortex - cytology ; Computer Simulation ; Humans ; Models, Neurological ; Nerve Net - cytology ; Nerve Net - physiology ; Neural Inhibition ; Neural Networks (Computer) ; Neural Pathways ; Neurons - classification ; Neurons - physiology</subject><ispartof>Cerebral cortex (New York, N.Y. 1991), 2014-03, Vol.24 (3), p.785-806</ispartof><rights>The Author 2012. Published by Oxford University Press. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-c7d7da706b874f7196a384941ddeb9f20ef9dc8a48f41f8de922f52c20d775fd3</citedby><cites>FETCH-LOGICAL-c486t-c7d7da706b874f7196a384941ddeb9f20ef9dc8a48f41f8de922f52c20d775fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23203991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Potjans, Tobias C</creatorcontrib><creatorcontrib>Diesmann, Markus</creatorcontrib><title>The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model</title><title>Cerebral cortex (New York, N.Y. 1991)</title><addtitle>Cereb Cortex</addtitle><description>In the past decade, the cell-type specific connectivity and activity of local cortical networks have been characterized experimentally to some detail. In parallel, modeling has been established as a tool to relate network structure to activity dynamics. While available comprehensive connectivity maps ( Thomson, West, et al. 2002; Binzegger et al. 2004) have been used in various computational studies, prominent features of the simulated activity such as the spontaneous firing rates do not match the experimental findings. Here, we analyze the properties of these maps to compile an integrated connectivity map, which additionally incorporates insights on the specific selection of target types. Based on this integrated map, we build a full-scale spiking network model of the local cortical microcircuit. The simulated spontaneous activity is asynchronous irregular and cell-type specific firing rates are in agreement with in vivo recordings in awake animals, including the low rate of layer 2/3 excitatory cells. The interplay of excitation and inhibition captures the flow of activity through cortical layers after transient thalamic stimulation. In conclusion, the integration of a large body of the available connectivity data enables us to expose the dynamical consequences of the cortical microcircuitry.</description><subject>Action Potentials - physiology</subject><subject>Cerebral Cortex - cytology</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Nerve Net - cytology</subject><subject>Nerve Net - physiology</subject><subject>Neural Inhibition</subject><subject>Neural Networks (Computer)</subject><subject>Neural Pathways</subject><subject>Neurons - classification</subject><subject>Neurons - physiology</subject><issn>1047-3211</issn><issn>1460-2199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1PXCEUhompqVa7dNuw7OZWvu4FumjSmKpNTNyMa8LAwUHvxxS4Y-bfl8mMpq664iQ8PDm8L0IXlHyjRPNLB8lN6XK5yrxVR-iUio40jGr9oc5EyIYzSk_Qp5yfCKGStewjOmGcEa41PUV5sQLsoO-bsl0DzmtwMUSHq7NEZ3s8RJcmF5ObY_mOE_S2xPER55JmV-YE2I4eW1fiJpYtjiO2OMxVl-vjnS8-7_ARysuUnvEweejP0XGwfYbPh_MMPVz_WlzdNnf3N7-vft41TqiuNE566a0k3VJJESTVneVKaEG9h6UOjEDQ3ikrVBA0KA-asdAyx4iXsg2en6Efe-96Xg7gHYwl2d6sUxxs2prJRvP-Zowr8zhtDNeMyE5VwdeDIE1_ZsjFDDHvwrIjTHM2tCUtF6oG_H9U1Lh51ypd0WaP1mBzThDeNqLE7Do1-07NvtPKf_n3G2_0a4n8L__Uosc</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Potjans, Tobias C</creator><creator>Diesmann, Markus</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QG</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20140301</creationdate><title>The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model</title><author>Potjans, Tobias C ; Diesmann, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-c7d7da706b874f7196a384941ddeb9f20ef9dc8a48f41f8de922f52c20d775fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Action Potentials - physiology</topic><topic>Cerebral Cortex - cytology</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Nerve Net - cytology</topic><topic>Nerve Net - physiology</topic><topic>Neural Inhibition</topic><topic>Neural Networks (Computer)</topic><topic>Neural Pathways</topic><topic>Neurons - classification</topic><topic>Neurons - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Potjans, Tobias C</creatorcontrib><creatorcontrib>Diesmann, Markus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Potjans, Tobias C</au><au>Diesmann, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model</atitle><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle><addtitle>Cereb Cortex</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>24</volume><issue>3</issue><spage>785</spage><epage>806</epage><pages>785-806</pages><issn>1047-3211</issn><eissn>1460-2199</eissn><abstract>In the past decade, the cell-type specific connectivity and activity of local cortical networks have been characterized experimentally to some detail. In parallel, modeling has been established as a tool to relate network structure to activity dynamics. While available comprehensive connectivity maps ( Thomson, West, et al. 2002; Binzegger et al. 2004) have been used in various computational studies, prominent features of the simulated activity such as the spontaneous firing rates do not match the experimental findings. Here, we analyze the properties of these maps to compile an integrated connectivity map, which additionally incorporates insights on the specific selection of target types. Based on this integrated map, we build a full-scale spiking network model of the local cortical microcircuit. The simulated spontaneous activity is asynchronous irregular and cell-type specific firing rates are in agreement with in vivo recordings in awake animals, including the low rate of layer 2/3 excitatory cells. The interplay of excitation and inhibition captures the flow of activity through cortical layers after transient thalamic stimulation. In conclusion, the integration of a large body of the available connectivity data enables us to expose the dynamical consequences of the cortical microcircuitry.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>23203991</pmid><doi>10.1093/cercor/bhs358</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-3211
ispartof Cerebral cortex (New York, N.Y. 1991), 2014-03, Vol.24 (3), p.785-806
issn 1047-3211
1460-2199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3920768
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Action Potentials - physiology
Cerebral Cortex - cytology
Computer Simulation
Humans
Models, Neurological
Nerve Net - cytology
Nerve Net - physiology
Neural Inhibition
Neural Networks (Computer)
Neural Pathways
Neurons - classification
Neurons - physiology
title The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A42%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20cell-type%20specific%20cortical%20microcircuit:%20relating%20structure%20and%20activity%20in%20a%20full-scale%20spiking%20network%20model&rft.jtitle=Cerebral%20cortex%20(New%20York,%20N.Y.%201991)&rft.au=Potjans,%20Tobias%20C&rft.date=2014-03-01&rft.volume=24&rft.issue=3&rft.spage=785&rft.epage=806&rft.pages=785-806&rft.issn=1047-3211&rft.eissn=1460-2199&rft_id=info:doi/10.1093/cercor/bhs358&rft_dat=%3Cproquest_pubme%3E1505348211%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499136589&rft_id=info:pmid/23203991&rfr_iscdi=true