A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness
Graphene has proved its significant role as a reinforcement material in improving the strength of polymers as well as metal matrix composites due to its excellent mechanical properties. In addition, graphene is also shown to block dislocation motion in a nanolayered metal-graphene composites resulti...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2014-02, Vol.4 (1), p.4049-4049, Article 4049 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4049 |
---|---|
container_issue | 1 |
container_start_page | 4049 |
container_title | Scientific reports |
container_volume | 4 |
creator | Pavithra, Chokkakula L. P. Sarada, Bulusu V. Rajulapati, Koteswararao V. Rao, Tata N. Sundararajan, G. |
description | Graphene has proved its significant role as a reinforcement material in improving the strength of polymers as well as metal matrix composites due to its excellent mechanical properties. In addition, graphene is also shown to block dislocation motion in a nanolayered metal-graphene composites resulting in ultra high strength. In the present paper, we demonstrate the synthesis of very hard Cu-Graphene composite foils by a simple, scalable and economical pulse reverse electrodeposition method with a well designed pulse profile. Optimization of pulse parameters and current density resulted in composite foils with well dispersed graphene, exhibiting a high hardness of ~2.5 GPa and an increased elastic modulus of ~137 GPa while exhibiting an electrical conductivity comparable to that of pure Cu. The pulse parameters are designed in such a way to have finer grain size of Cu matrix as well as uniform dispersion of graphene throughout the matrix, contributing to high hardness and modulus. Annealing of these nanocomposite foils at 300°C, neither causes grain growth of the Cu matrix nor deteriorates the mechanical properties, indicating the role of graphene as an excellent reinforcement material as well as a grain growth inhibitor. |
doi_str_mv | 10.1038/srep04049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3920342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897793426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-63833f6078836e6c2ca737fc6b75797f44b61f2464ce15bafc150e983a155fef3</originalsourceid><addsrcrecordid>eNplkV1rHCEUhqU0NCHJRf9AEXrTFqbxa8bxprAs-SiE5KLttbjmuOMyo1ZnG_Lva9h02bZeeITz-HjkRegtJZ8p4f1FyZCIIEK9QieMiLZhnLHXB-djdF7KhtTVMiWoeoOOmWhpvcJP0GaB7-ARX45g5xztAJO3ZsSLlHI0dsAuZjwPgL89hVqKLzg6vIwpQW6us0kDBMB3JkQbpxSLnwFfRT8W_OjnAd_4dd1MfghQyhk6cmYscP5ST9GPq8vvy5vm9v7663Jx21jB-7npeM-564jse95BZ5k1kktnu5VspZJOiFVHHROdsEDblXGWtgRUzw1tWweOn6IvO2_ariZ4sBDmbEadsp9MftLReP13J_hBr-MvzRUjXLAq-PAiyPHnFsqsJ18sjKMJELdFU6EU5ULJrqLv_0E3cZtD_Z6mvZJSVd8z9XFH2RxLzcvth6FEP4eo9yFW9t3h9HvyT2QV-LQDSm2FNeSDJ_-z_Qa-c6Zt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1897793426</pqid></control><display><type>article</type><title>A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Pavithra, Chokkakula L. P. ; Sarada, Bulusu V. ; Rajulapati, Koteswararao V. ; Rao, Tata N. ; Sundararajan, G.</creator><creatorcontrib>Pavithra, Chokkakula L. P. ; Sarada, Bulusu V. ; Rajulapati, Koteswararao V. ; Rao, Tata N. ; Sundararajan, G.</creatorcontrib><description>Graphene has proved its significant role as a reinforcement material in improving the strength of polymers as well as metal matrix composites due to its excellent mechanical properties. In addition, graphene is also shown to block dislocation motion in a nanolayered metal-graphene composites resulting in ultra high strength. In the present paper, we demonstrate the synthesis of very hard Cu-Graphene composite foils by a simple, scalable and economical pulse reverse electrodeposition method with a well designed pulse profile. Optimization of pulse parameters and current density resulted in composite foils with well dispersed graphene, exhibiting a high hardness of ~2.5 GPa and an increased elastic modulus of ~137 GPa while exhibiting an electrical conductivity comparable to that of pure Cu. The pulse parameters are designed in such a way to have finer grain size of Cu matrix as well as uniform dispersion of graphene throughout the matrix, contributing to high hardness and modulus. Annealing of these nanocomposite foils at 300°C, neither causes grain growth of the Cu matrix nor deteriorates the mechanical properties, indicating the role of graphene as an excellent reinforcement material as well as a grain growth inhibitor.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep04049</identifier><identifier>PMID: 24514043</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 147/135 ; 147/143 ; 639/301/357/551 ; 639/638/298/917 ; 639/638/298/918/1053 ; Copper ; Dislocation ; Electrical conductivity ; Electrochemistry ; Grain growth ; Hardness ; Humanities and Social Sciences ; Mechanical properties ; multidisciplinary ; Nanocomposites ; Polymers ; Science</subject><ispartof>Scientific reports, 2014-02, Vol.4 (1), p.4049-4049, Article 4049</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Feb 2014</rights><rights>Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-63833f6078836e6c2ca737fc6b75797f44b61f2464ce15bafc150e983a155fef3</citedby><cites>FETCH-LOGICAL-c438t-63833f6078836e6c2ca737fc6b75797f44b61f2464ce15bafc150e983a155fef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920342/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920342/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24514043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pavithra, Chokkakula L. P.</creatorcontrib><creatorcontrib>Sarada, Bulusu V.</creatorcontrib><creatorcontrib>Rajulapati, Koteswararao V.</creatorcontrib><creatorcontrib>Rao, Tata N.</creatorcontrib><creatorcontrib>Sundararajan, G.</creatorcontrib><title>A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Graphene has proved its significant role as a reinforcement material in improving the strength of polymers as well as metal matrix composites due to its excellent mechanical properties. In addition, graphene is also shown to block dislocation motion in a nanolayered metal-graphene composites resulting in ultra high strength. In the present paper, we demonstrate the synthesis of very hard Cu-Graphene composite foils by a simple, scalable and economical pulse reverse electrodeposition method with a well designed pulse profile. Optimization of pulse parameters and current density resulted in composite foils with well dispersed graphene, exhibiting a high hardness of ~2.5 GPa and an increased elastic modulus of ~137 GPa while exhibiting an electrical conductivity comparable to that of pure Cu. The pulse parameters are designed in such a way to have finer grain size of Cu matrix as well as uniform dispersion of graphene throughout the matrix, contributing to high hardness and modulus. Annealing of these nanocomposite foils at 300°C, neither causes grain growth of the Cu matrix nor deteriorates the mechanical properties, indicating the role of graphene as an excellent reinforcement material as well as a grain growth inhibitor.</description><subject>140/133</subject><subject>147/135</subject><subject>147/143</subject><subject>639/301/357/551</subject><subject>639/638/298/917</subject><subject>639/638/298/918/1053</subject><subject>Copper</subject><subject>Dislocation</subject><subject>Electrical conductivity</subject><subject>Electrochemistry</subject><subject>Grain growth</subject><subject>Hardness</subject><subject>Humanities and Social Sciences</subject><subject>Mechanical properties</subject><subject>multidisciplinary</subject><subject>Nanocomposites</subject><subject>Polymers</subject><subject>Science</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkV1rHCEUhqU0NCHJRf9AEXrTFqbxa8bxprAs-SiE5KLttbjmuOMyo1ZnG_Lva9h02bZeeITz-HjkRegtJZ8p4f1FyZCIIEK9QieMiLZhnLHXB-djdF7KhtTVMiWoeoOOmWhpvcJP0GaB7-ARX45g5xztAJO3ZsSLlHI0dsAuZjwPgL89hVqKLzg6vIwpQW6us0kDBMB3JkQbpxSLnwFfRT8W_OjnAd_4dd1MfghQyhk6cmYscP5ST9GPq8vvy5vm9v7663Jx21jB-7npeM-564jse95BZ5k1kktnu5VspZJOiFVHHROdsEDblXGWtgRUzw1tWweOn6IvO2_ariZ4sBDmbEadsp9MftLReP13J_hBr-MvzRUjXLAq-PAiyPHnFsqsJ18sjKMJELdFU6EU5ULJrqLv_0E3cZtD_Z6mvZJSVd8z9XFH2RxLzcvth6FEP4eo9yFW9t3h9HvyT2QV-LQDSm2FNeSDJ_-z_Qa-c6Zt</recordid><startdate>20140211</startdate><enddate>20140211</enddate><creator>Pavithra, Chokkakula L. P.</creator><creator>Sarada, Bulusu V.</creator><creator>Rajulapati, Koteswararao V.</creator><creator>Rao, Tata N.</creator><creator>Sundararajan, G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140211</creationdate><title>A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness</title><author>Pavithra, Chokkakula L. P. ; Sarada, Bulusu V. ; Rajulapati, Koteswararao V. ; Rao, Tata N. ; Sundararajan, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-63833f6078836e6c2ca737fc6b75797f44b61f2464ce15bafc150e983a155fef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>140/133</topic><topic>147/135</topic><topic>147/143</topic><topic>639/301/357/551</topic><topic>639/638/298/917</topic><topic>639/638/298/918/1053</topic><topic>Copper</topic><topic>Dislocation</topic><topic>Electrical conductivity</topic><topic>Electrochemistry</topic><topic>Grain growth</topic><topic>Hardness</topic><topic>Humanities and Social Sciences</topic><topic>Mechanical properties</topic><topic>multidisciplinary</topic><topic>Nanocomposites</topic><topic>Polymers</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pavithra, Chokkakula L. P.</creatorcontrib><creatorcontrib>Sarada, Bulusu V.</creatorcontrib><creatorcontrib>Rajulapati, Koteswararao V.</creatorcontrib><creatorcontrib>Rao, Tata N.</creatorcontrib><creatorcontrib>Sundararajan, G.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pavithra, Chokkakula L. P.</au><au>Sarada, Bulusu V.</au><au>Rajulapati, Koteswararao V.</au><au>Rao, Tata N.</au><au>Sundararajan, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2014-02-11</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>4049</spage><epage>4049</epage><pages>4049-4049</pages><artnum>4049</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Graphene has proved its significant role as a reinforcement material in improving the strength of polymers as well as metal matrix composites due to its excellent mechanical properties. In addition, graphene is also shown to block dislocation motion in a nanolayered metal-graphene composites resulting in ultra high strength. In the present paper, we demonstrate the synthesis of very hard Cu-Graphene composite foils by a simple, scalable and economical pulse reverse electrodeposition method with a well designed pulse profile. Optimization of pulse parameters and current density resulted in composite foils with well dispersed graphene, exhibiting a high hardness of ~2.5 GPa and an increased elastic modulus of ~137 GPa while exhibiting an electrical conductivity comparable to that of pure Cu. The pulse parameters are designed in such a way to have finer grain size of Cu matrix as well as uniform dispersion of graphene throughout the matrix, contributing to high hardness and modulus. Annealing of these nanocomposite foils at 300°C, neither causes grain growth of the Cu matrix nor deteriorates the mechanical properties, indicating the role of graphene as an excellent reinforcement material as well as a grain growth inhibitor.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24514043</pmid><doi>10.1038/srep04049</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2014-02, Vol.4 (1), p.4049-4049, Article 4049 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3920342 |
source | Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 140/133 147/135 147/143 639/301/357/551 639/638/298/917 639/638/298/918/1053 Copper Dislocation Electrical conductivity Electrochemistry Grain growth Hardness Humanities and Social Sciences Mechanical properties multidisciplinary Nanocomposites Polymers Science |
title | A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A26%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Electrochemical%20Approach%20for%20the%20Synthesis%20of%20Copper-Graphene%20Nanocomposite%20Foils%20with%20High%20Hardness&rft.jtitle=Scientific%20reports&rft.au=Pavithra,%20Chokkakula%20L.%20P.&rft.date=2014-02-11&rft.volume=4&rft.issue=1&rft.spage=4049&rft.epage=4049&rft.pages=4049-4049&rft.artnum=4049&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep04049&rft_dat=%3Cproquest_pubme%3E1897793426%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1897793426&rft_id=info:pmid/24514043&rfr_iscdi=true |