High-resolution, large dynamic range field map estimation

Purpose We present a theory and a corresponding method to compute high‐resolution field maps over a large dynamic range. Theory and Methods We derive a closed‐form expression for the error in the field map value when computed from two echoes. We formulate an optimization problem to choose three echo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2014-01, Vol.71 (1), p.105-117
Hauptverfasser: Dagher, Joseph, Reese, Timothy, Bilgin, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue 1
container_start_page 105
container_title Magnetic resonance in medicine
container_volume 71
creator Dagher, Joseph
Reese, Timothy
Bilgin, Ali
description Purpose We present a theory and a corresponding method to compute high‐resolution field maps over a large dynamic range. Theory and Methods We derive a closed‐form expression for the error in the field map value when computed from two echoes. We formulate an optimization problem to choose three echo times which result in a pair of maximally distinct error distributions. We use standard field mapping sequences at the prescribed echo times. We then design a corresponding estimation algorithm which takes advantage of the optimized echo times to disambiguate the field offset value. Results We validate our method using high‐resolution images of a phantom at 7T. The resulting field maps demonstrate robust mapping over both a large dynamic range, and in low SNR regions. We also present high‐resolution offset maps in vivo using both, GRE and multiecho gradient echo sequences. Even though the proposed echo time spacings are larger than the well known phase aliasing cutoff, the resulting field maps exhibit a large dynamic range without the use of phase unwrapping or spatial regularization techniques. Conclusion We demonstrate a novel three‐echo field map estimation method which overcomes the traditional noise‐dynamic range trade‐off. Magn Reson Med 71:105–117, 2014. © 2013 Wiley Periodicals, Inc.
doi_str_mv 10.1002/mrm.24636
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3919137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3158308781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5146-b3d3c6c35e58f52c08e4b24cea8bcee2887f57f118146876db5a62ddae8f73123</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhkNR7LZ64R8oA9604LT5_rgplEVbsa0oFsWbkMmc2abOx5rsqPvvzbrt0hYEr0LIc56cc16EXhJ8SDCmR13sDimXTG6hCRGUllQY_gRNsOK4ZMTwbbST0g3G2BjFn6FtyjgmlIsJMmdhdl1GSEM7LsLQvy5aF2dQ1MvedcEX0fX51gRo66Jz8wLSInRuRT5HTxvXJnhxe-6iq7dvPk_PyvMPp--mJ-elF4TLsmI189IzAUI3gnqsgVeUe3C68gBUa9UI1RCiM62VrCvhJK1rB7pRjFC2i47X3vlYdVB76BfRtXYecx9xaQcX7MOXPlzb2fDTMkMMYSoL9m8Fcfgx5gFsF5KHtnU9DGOyhBsqJaGY_AcqjRQyrzijrx6hN8MY-7yJFaVl_pvqTB2sKR-HlCI0m74JtqvsbM7O_s0us3v3B92Qd2Fl4GgN_AotLP9tshefLu6U5boipAX83lS4-N1KxZSwXy5P7bfp9PLre67sR_YHIv-xtQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1468619128</pqid></control><display><type>article</type><title>High-resolution, large dynamic range field map estimation</title><source>MEDLINE</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Dagher, Joseph ; Reese, Timothy ; Bilgin, Ali</creator><creatorcontrib>Dagher, Joseph ; Reese, Timothy ; Bilgin, Ali</creatorcontrib><description>Purpose We present a theory and a corresponding method to compute high‐resolution field maps over a large dynamic range. Theory and Methods We derive a closed‐form expression for the error in the field map value when computed from two echoes. We formulate an optimization problem to choose three echo times which result in a pair of maximally distinct error distributions. We use standard field mapping sequences at the prescribed echo times. We then design a corresponding estimation algorithm which takes advantage of the optimized echo times to disambiguate the field offset value. Results We validate our method using high‐resolution images of a phantom at 7T. The resulting field maps demonstrate robust mapping over both a large dynamic range, and in low SNR regions. We also present high‐resolution offset maps in vivo using both, GRE and multiecho gradient echo sequences. Even though the proposed echo time spacings are larger than the well known phase aliasing cutoff, the resulting field maps exhibit a large dynamic range without the use of phase unwrapping or spatial regularization techniques. Conclusion We demonstrate a novel three‐echo field map estimation method which overcomes the traditional noise‐dynamic range trade‐off. Magn Reson Med 71:105–117, 2014. © 2013 Wiley Periodicals, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.24636</identifier><identifier>PMID: 23401245</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Ankle Joint - anatomy &amp; histology ; Ankle Joint - physiology ; Brain - anatomy &amp; histology ; Brain - physiology ; Brain Mapping - methods ; Female ; field inhomogeneity ; field map estimation ; Humans ; Image Interpretation, Computer-Assisted - methods ; Magnetic Fields ; Magnetic Resonance Imaging - methods ; Male ; MR phase ; phase unwrapping ; Radiometry - methods ; Reproducibility of Results ; Sensitivity and Specificity</subject><ispartof>Magnetic resonance in medicine, 2014-01, Vol.71 (1), p.105-117</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5146-b3d3c6c35e58f52c08e4b24cea8bcee2887f57f118146876db5a62ddae8f73123</citedby><cites>FETCH-LOGICAL-c5146-b3d3c6c35e58f52c08e4b24cea8bcee2887f57f118146876db5a62ddae8f73123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.24636$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.24636$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23401245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dagher, Joseph</creatorcontrib><creatorcontrib>Reese, Timothy</creatorcontrib><creatorcontrib>Bilgin, Ali</creatorcontrib><title>High-resolution, large dynamic range field map estimation</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>Purpose We present a theory and a corresponding method to compute high‐resolution field maps over a large dynamic range. Theory and Methods We derive a closed‐form expression for the error in the field map value when computed from two echoes. We formulate an optimization problem to choose three echo times which result in a pair of maximally distinct error distributions. We use standard field mapping sequences at the prescribed echo times. We then design a corresponding estimation algorithm which takes advantage of the optimized echo times to disambiguate the field offset value. Results We validate our method using high‐resolution images of a phantom at 7T. The resulting field maps demonstrate robust mapping over both a large dynamic range, and in low SNR regions. We also present high‐resolution offset maps in vivo using both, GRE and multiecho gradient echo sequences. Even though the proposed echo time spacings are larger than the well known phase aliasing cutoff, the resulting field maps exhibit a large dynamic range without the use of phase unwrapping or spatial regularization techniques. Conclusion We demonstrate a novel three‐echo field map estimation method which overcomes the traditional noise‐dynamic range trade‐off. Magn Reson Med 71:105–117, 2014. © 2013 Wiley Periodicals, Inc.</description><subject>Algorithms</subject><subject>Ankle Joint - anatomy &amp; histology</subject><subject>Ankle Joint - physiology</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>Female</subject><subject>field inhomogeneity</subject><subject>field map estimation</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Magnetic Fields</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>MR phase</subject><subject>phase unwrapping</subject><subject>Radiometry - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV1rFDEUhkNR7LZ64R8oA9604LT5_rgplEVbsa0oFsWbkMmc2abOx5rsqPvvzbrt0hYEr0LIc56cc16EXhJ8SDCmR13sDimXTG6hCRGUllQY_gRNsOK4ZMTwbbST0g3G2BjFn6FtyjgmlIsJMmdhdl1GSEM7LsLQvy5aF2dQ1MvedcEX0fX51gRo66Jz8wLSInRuRT5HTxvXJnhxe-6iq7dvPk_PyvMPp--mJ-elF4TLsmI189IzAUI3gnqsgVeUe3C68gBUa9UI1RCiM62VrCvhJK1rB7pRjFC2i47X3vlYdVB76BfRtXYecx9xaQcX7MOXPlzb2fDTMkMMYSoL9m8Fcfgx5gFsF5KHtnU9DGOyhBsqJaGY_AcqjRQyrzijrx6hN8MY-7yJFaVl_pvqTB2sKR-HlCI0m74JtqvsbM7O_s0us3v3B92Qd2Fl4GgN_AotLP9tshefLu6U5boipAX83lS4-N1KxZSwXy5P7bfp9PLre67sR_YHIv-xtQ</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Dagher, Joseph</creator><creator>Reese, Timothy</creator><creator>Bilgin, Ali</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>201401</creationdate><title>High-resolution, large dynamic range field map estimation</title><author>Dagher, Joseph ; Reese, Timothy ; Bilgin, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5146-b3d3c6c35e58f52c08e4b24cea8bcee2887f57f118146876db5a62ddae8f73123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Ankle Joint - anatomy &amp; histology</topic><topic>Ankle Joint - physiology</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>Female</topic><topic>field inhomogeneity</topic><topic>field map estimation</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Magnetic Fields</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>MR phase</topic><topic>phase unwrapping</topic><topic>Radiometry - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dagher, Joseph</creatorcontrib><creatorcontrib>Reese, Timothy</creatorcontrib><creatorcontrib>Bilgin, Ali</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dagher, Joseph</au><au>Reese, Timothy</au><au>Bilgin, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution, large dynamic range field map estimation</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2014-01</date><risdate>2014</risdate><volume>71</volume><issue>1</issue><spage>105</spage><epage>117</epage><pages>105-117</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Purpose We present a theory and a corresponding method to compute high‐resolution field maps over a large dynamic range. Theory and Methods We derive a closed‐form expression for the error in the field map value when computed from two echoes. We formulate an optimization problem to choose three echo times which result in a pair of maximally distinct error distributions. We use standard field mapping sequences at the prescribed echo times. We then design a corresponding estimation algorithm which takes advantage of the optimized echo times to disambiguate the field offset value. Results We validate our method using high‐resolution images of a phantom at 7T. The resulting field maps demonstrate robust mapping over both a large dynamic range, and in low SNR regions. We also present high‐resolution offset maps in vivo using both, GRE and multiecho gradient echo sequences. Even though the proposed echo time spacings are larger than the well known phase aliasing cutoff, the resulting field maps exhibit a large dynamic range without the use of phase unwrapping or spatial regularization techniques. Conclusion We demonstrate a novel three‐echo field map estimation method which overcomes the traditional noise‐dynamic range trade‐off. Magn Reson Med 71:105–117, 2014. © 2013 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>23401245</pmid><doi>10.1002/mrm.24636</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2014-01, Vol.71 (1), p.105-117
issn 0740-3194
1522-2594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3919137
source MEDLINE; Wiley Free Content; Wiley Online Library All Journals
subjects Algorithms
Ankle Joint - anatomy & histology
Ankle Joint - physiology
Brain - anatomy & histology
Brain - physiology
Brain Mapping - methods
Female
field inhomogeneity
field map estimation
Humans
Image Interpretation, Computer-Assisted - methods
Magnetic Fields
Magnetic Resonance Imaging - methods
Male
MR phase
phase unwrapping
Radiometry - methods
Reproducibility of Results
Sensitivity and Specificity
title High-resolution, large dynamic range field map estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution,%20large%20dynamic%20range%20field%20map%20estimation&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Dagher,%20Joseph&rft.date=2014-01&rft.volume=71&rft.issue=1&rft.spage=105&rft.epage=117&rft.pages=105-117&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.24636&rft_dat=%3Cproquest_pubme%3E3158308781%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1468619128&rft_id=info:pmid/23401245&rfr_iscdi=true