Lower and upper bounds for the two-echelon capacitated location-routing problem

In this paper, we introduce two algorithms to address the two-echelon capacitated location-routing problem (2E-CLRP). We introduce a branch-and-cut algorithm based on the solution of a new two-index vehicle-flow formulation, which is strengthened with several families of valid inequalities. We also...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2012-12, Vol.39 (12), p.3185-3199
Hauptverfasser: Contardo, Claudio, Hemmelmayr, Vera, Crainic, Teodor Gabriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3199
container_issue 12
container_start_page 3185
container_title Computers & operations research
container_volume 39
creator Contardo, Claudio
Hemmelmayr, Vera
Crainic, Teodor Gabriel
description In this paper, we introduce two algorithms to address the two-echelon capacitated location-routing problem (2E-CLRP). We introduce a branch-and-cut algorithm based on the solution of a new two-index vehicle-flow formulation, which is strengthened with several families of valid inequalities. We also propose an adaptive large-neighbourhood search (ALNS) meta-heuristic with the objective of finding good-quality solutions quickly. The computational results on a large set of instances from the literature show that the ALNS outperforms existing heuristics. Furthermore, the branch-and-cut method provides tight lower bounds and is able to solve small- and medium-size instances to optimality within reasonable computing times. ► We present a new modeling framework for the 2E-CLRP that decomposes the problem into two CLRPs. ► We introduce a compact two-index formulation for the 2E-CLRP inspired from a compact formulation of the CLRP. ► We introduce the first exact algorithm for the 2E-CLRP, namely a branch-and-cut algorithm based on the new formulation with additional cuts. ► We introduce a ALNS metaheuristic that outperforms previous methods.
doi_str_mv 10.1016/j.cor.2012.04.003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3916792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054812000834</els_id><sourcerecordid>1365131943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-6214eb3d9e0154ca3457bc73539de5ff7c493c3fa7280b10f8601025f8aede663</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo7rj6A7xIXwQvPaby2Y0gLMv6AQN7UfAW0unqnQw9SZt07-K_3wwzrnpxc6lAnnqp1EPIa6BroKDe79YupjWjwNZUrCnlT8gKGs1rreSPp2RFOZU1laI5Iy9y3tFyNIPn5IwJCQBarcj1Jt5hqmzoq2Wayq2LS-hzNcRUzVus5rtYo9viGEPl7GSdn-2MfTVGZ2cfQ53iMvtwU00pdiPuX5Jngx0zvjrVc_L909W3yy_15vrz18uLTe2kbuZaMRDY8b5FClI4y4XUndNc8rZHOQzaiZY7PljNGtoBHRpFgTI5NBZ7VIqfk4_H3Gnp9tg7DHOyo5mS39v0y0Trzb8vwW_NTbw1vAWlW1YC3p0CUvy5YJ7N3meH42gDxiUbaJiSLaNlnY-iErgQbSPl4yhXBYZW8ILCEXUp5pxweBgeqDnoNTtT9JqDXkOFKXpLz5u_f_3Q8dtnAd6eAJudHYdkg_P5D6doIygcgj4cOSyObj0mk53H4LD3Cd1s-uj_M8Y9fEHCvw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365131943</pqid></control><display><type>article</type><title>Lower and upper bounds for the two-echelon capacitated location-routing problem</title><source>Elsevier ScienceDirect Journals</source><creator>Contardo, Claudio ; Hemmelmayr, Vera ; Crainic, Teodor Gabriel</creator><creatorcontrib>Contardo, Claudio ; Hemmelmayr, Vera ; Crainic, Teodor Gabriel</creatorcontrib><description>In this paper, we introduce two algorithms to address the two-echelon capacitated location-routing problem (2E-CLRP). We introduce a branch-and-cut algorithm based on the solution of a new two-index vehicle-flow formulation, which is strengthened with several families of valid inequalities. We also propose an adaptive large-neighbourhood search (ALNS) meta-heuristic with the objective of finding good-quality solutions quickly. The computational results on a large set of instances from the literature show that the ALNS outperforms existing heuristics. Furthermore, the branch-and-cut method provides tight lower bounds and is able to solve small- and medium-size instances to optimality within reasonable computing times. ► We present a new modeling framework for the 2E-CLRP that decomposes the problem into two CLRPs. ► We introduce a compact two-index formulation for the 2E-CLRP inspired from a compact formulation of the CLRP. ► We introduce the first exact algorithm for the 2E-CLRP, namely a branch-and-cut algorithm based on the new formulation with additional cuts. ► We introduce a ALNS metaheuristic that outperforms previous methods.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>DOI: 10.1016/j.cor.2012.04.003</identifier><identifier>PMID: 24511176</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adaptive large neighbourhood search ; Algorithms ; Applied sciences ; Branch-and-cut ; Computational efficiency ; Exact sciences and technology ; Inequalities ; Logistics ; Lower bounds ; Mathematical models ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Optimization ; Two-echelon capacitated location routing problem ; Upper bounds</subject><ispartof>Computers &amp; operations research, 2012-12, Vol.39 (12), p.3185-3199</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2012 Elsevier Ltd. 2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-6214eb3d9e0154ca3457bc73539de5ff7c493c3fa7280b10f8601025f8aede663</citedby><cites>FETCH-LOGICAL-c578t-6214eb3d9e0154ca3457bc73539de5ff7c493c3fa7280b10f8601025f8aede663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0305054812000834$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26084013$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24511176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Contardo, Claudio</creatorcontrib><creatorcontrib>Hemmelmayr, Vera</creatorcontrib><creatorcontrib>Crainic, Teodor Gabriel</creatorcontrib><title>Lower and upper bounds for the two-echelon capacitated location-routing problem</title><title>Computers &amp; operations research</title><addtitle>Comput Oper Res</addtitle><description>In this paper, we introduce two algorithms to address the two-echelon capacitated location-routing problem (2E-CLRP). We introduce a branch-and-cut algorithm based on the solution of a new two-index vehicle-flow formulation, which is strengthened with several families of valid inequalities. We also propose an adaptive large-neighbourhood search (ALNS) meta-heuristic with the objective of finding good-quality solutions quickly. The computational results on a large set of instances from the literature show that the ALNS outperforms existing heuristics. Furthermore, the branch-and-cut method provides tight lower bounds and is able to solve small- and medium-size instances to optimality within reasonable computing times. ► We present a new modeling framework for the 2E-CLRP that decomposes the problem into two CLRPs. ► We introduce a compact two-index formulation for the 2E-CLRP inspired from a compact formulation of the CLRP. ► We introduce the first exact algorithm for the 2E-CLRP, namely a branch-and-cut algorithm based on the new formulation with additional cuts. ► We introduce a ALNS metaheuristic that outperforms previous methods.</description><subject>Adaptive large neighbourhood search</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Branch-and-cut</subject><subject>Computational efficiency</subject><subject>Exact sciences and technology</subject><subject>Inequalities</subject><subject>Logistics</subject><subject>Lower bounds</subject><subject>Mathematical models</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Two-echelon capacitated location routing problem</subject><subject>Upper bounds</subject><issn>0305-0548</issn><issn>1873-765X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU2LFDEQhoMo7rj6A7xIXwQvPaby2Y0gLMv6AQN7UfAW0unqnQw9SZt07-K_3wwzrnpxc6lAnnqp1EPIa6BroKDe79YupjWjwNZUrCnlT8gKGs1rreSPp2RFOZU1laI5Iy9y3tFyNIPn5IwJCQBarcj1Jt5hqmzoq2Wayq2LS-hzNcRUzVus5rtYo9viGEPl7GSdn-2MfTVGZ2cfQ53iMvtwU00pdiPuX5Jngx0zvjrVc_L909W3yy_15vrz18uLTe2kbuZaMRDY8b5FClI4y4XUndNc8rZHOQzaiZY7PljNGtoBHRpFgTI5NBZ7VIqfk4_H3Gnp9tg7DHOyo5mS39v0y0Trzb8vwW_NTbw1vAWlW1YC3p0CUvy5YJ7N3meH42gDxiUbaJiSLaNlnY-iErgQbSPl4yhXBYZW8ILCEXUp5pxweBgeqDnoNTtT9JqDXkOFKXpLz5u_f_3Q8dtnAd6eAJudHYdkg_P5D6doIygcgj4cOSyObj0mk53H4LD3Cd1s-uj_M8Y9fEHCvw</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Contardo, Claudio</creator><creator>Hemmelmayr, Vera</creator><creator>Crainic, Teodor Gabriel</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20121201</creationdate><title>Lower and upper bounds for the two-echelon capacitated location-routing problem</title><author>Contardo, Claudio ; Hemmelmayr, Vera ; Crainic, Teodor Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-6214eb3d9e0154ca3457bc73539de5ff7c493c3fa7280b10f8601025f8aede663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive large neighbourhood search</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Branch-and-cut</topic><topic>Computational efficiency</topic><topic>Exact sciences and technology</topic><topic>Inequalities</topic><topic>Logistics</topic><topic>Lower bounds</topic><topic>Mathematical models</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Two-echelon capacitated location routing problem</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Contardo, Claudio</creatorcontrib><creatorcontrib>Hemmelmayr, Vera</creatorcontrib><creatorcontrib>Crainic, Teodor Gabriel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Contardo, Claudio</au><au>Hemmelmayr, Vera</au><au>Crainic, Teodor Gabriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower and upper bounds for the two-echelon capacitated location-routing problem</atitle><jtitle>Computers &amp; operations research</jtitle><addtitle>Comput Oper Res</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>39</volume><issue>12</issue><spage>3185</spage><epage>3199</epage><pages>3185-3199</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><coden>CMORAP</coden><abstract>In this paper, we introduce two algorithms to address the two-echelon capacitated location-routing problem (2E-CLRP). We introduce a branch-and-cut algorithm based on the solution of a new two-index vehicle-flow formulation, which is strengthened with several families of valid inequalities. We also propose an adaptive large-neighbourhood search (ALNS) meta-heuristic with the objective of finding good-quality solutions quickly. The computational results on a large set of instances from the literature show that the ALNS outperforms existing heuristics. Furthermore, the branch-and-cut method provides tight lower bounds and is able to solve small- and medium-size instances to optimality within reasonable computing times. ► We present a new modeling framework for the 2E-CLRP that decomposes the problem into two CLRPs. ► We introduce a compact two-index formulation for the 2E-CLRP inspired from a compact formulation of the CLRP. ► We introduce the first exact algorithm for the 2E-CLRP, namely a branch-and-cut algorithm based on the new formulation with additional cuts. ► We introduce a ALNS metaheuristic that outperforms previous methods.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>24511176</pmid><doi>10.1016/j.cor.2012.04.003</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 2012-12, Vol.39 (12), p.3185-3199
issn 0305-0548
1873-765X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3916792
source Elsevier ScienceDirect Journals
subjects Adaptive large neighbourhood search
Algorithms
Applied sciences
Branch-and-cut
Computational efficiency
Exact sciences and technology
Inequalities
Logistics
Lower bounds
Mathematical models
Operational research and scientific management
Operational research. Management science
Operations research
Optimization
Two-echelon capacitated location routing problem
Upper bounds
title Lower and upper bounds for the two-echelon capacitated location-routing problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A15%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20and%20upper%20bounds%20for%20the%20two-echelon%20capacitated%20location-routing%20problem&rft.jtitle=Computers%20&%20operations%20research&rft.au=Contardo,%20Claudio&rft.date=2012-12-01&rft.volume=39&rft.issue=12&rft.spage=3185&rft.epage=3199&rft.pages=3185-3199&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2012.04.003&rft_dat=%3Cproquest_pubme%3E1365131943%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365131943&rft_id=info:pmid/24511176&rft_els_id=S0305054812000834&rfr_iscdi=true