Semi-Automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images

Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroinformatics (Totowa, N.J.) N.J.), 2013, Vol.11 (1), p.5-29
Hauptverfasser: Jurrus, Elizabeth, Watanabe, Shigeki, Giuly, Richard J., Paiva, Antonio R. C., Ellisman, Mark H., Jorgensen, Erik M., Tasdizen, Tolga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 1
container_start_page 5
container_title Neuroinformatics (Totowa, N.J.)
container_volume 11
creator Jurrus, Elizabeth
Watanabe, Shigeki
Giuly, Richard J.
Paiva, Antonio R. C.
Ellisman, Mark H.
Jorgensen, Erik M.
Tasdizen, Tolga
description Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated process first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes.
doi_str_mv 10.1007/s12021-012-9149-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3914654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2857573881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-33cd740f886448d035aac4da276e8eb4d21bcf0db320e05d0e97b5bb2acf75123</originalsourceid><addsrcrecordid>eNqNktuK1TAUhosozkEfwBspyoA31ZVDk_ZmYBxHHRgPMHod0nS1O0ObbJNW2G9varfjKAheJWR96_Tnz7InBF4SAPkqEgqUFEBoURNeF7t72SEpy7oAqOr7y53VBZU1OciOYrwBoEICPMwOKBWcV0IeZsM1jrY4myc_6gnb_CPOwbv8tZ9dq8Muf4MTmsmmJ-1S1LsmaGc21vX55-ANxphfYz-im_RPyrr8YkgZS5EP1gQfjd_u8stR9xgfZQ86PUR8vD-Ps69vL76cvy-uPr27PD-7KkwpYCoYM63k0FXVMmULrNTa8FZTKbDChreUNKaDtmEUEMoWsJZN2TRUm06WhLLj7HStu52bEVuTpgt6UNtgx7ST8tqqPyPOblTvvyuWZBQlTwWerQV8nKyKxiYRNsY7lzZTBARALRP0Yt8l-G8zxkmNNhocBu3Qz1ERWhMBZUXhP1DJqKAlW1o__wu98XNwSa5ECcErzsXSm6zUonAM2N0uR0At3lCrN1Tyhlq8oXYp5-ldVW4zfpkhASd7QEejh275aRt_c5IwIRhLHF25mEKux3BnxH92_wFZedLU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266484467</pqid></control><display><type>article</type><title>Semi-Automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Jurrus, Elizabeth ; Watanabe, Shigeki ; Giuly, Richard J. ; Paiva, Antonio R. C. ; Ellisman, Mark H. ; Jorgensen, Erik M. ; Tasdizen, Tolga</creator><creatorcontrib>Jurrus, Elizabeth ; Watanabe, Shigeki ; Giuly, Richard J. ; Paiva, Antonio R. C. ; Ellisman, Mark H. ; Jorgensen, Erik M. ; Tasdizen, Tolga ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated process first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes.</description><identifier>ISSN: 1539-2791</identifier><identifier>EISSN: 1559-0089</identifier><identifier>DOI: 10.1007/s12021-012-9149-y</identifier><identifier>PMID: 22644867</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Applied sciences ; Artificial Intelligence ; Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Boundaries ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Connectionism. Neural networks ; Connectome - methods ; Connectomics ; Data processing ; Detection, estimation, filtering, equalization, prediction ; Electron Microscopy ; Exact sciences and technology ; Feature Detection ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image Processing ; Image Processing, Computer-Assisted - methods ; Information, signal and communications theory ; Learning algorithms ; Machine Learning ; Microscopy, Electron, Transmission - methods ; Nervous system ; Neural Networks, Computer ; Neurology ; Neurons ; Neurons - ultrastructure ; Neurosciences ; Original Article ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Segmentation ; Signal and communications theory ; Signal, noise ; Software ; Telecommunications and information theory ; User-Computer Interface</subject><ispartof>Neuroinformatics (Totowa, N.J.), 2013, Vol.11 (1), p.5-29</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>2014 INIST-CNRS</rights><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-33cd740f886448d035aac4da276e8eb4d21bcf0db320e05d0e97b5bb2acf75123</citedby><cites>FETCH-LOGICAL-c560t-33cd740f886448d035aac4da276e8eb4d21bcf0db320e05d0e97b5bb2acf75123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12021-012-9149-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12021-012-9149-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27136633$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22644867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1060097$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jurrus, Elizabeth</creatorcontrib><creatorcontrib>Watanabe, Shigeki</creatorcontrib><creatorcontrib>Giuly, Richard J.</creatorcontrib><creatorcontrib>Paiva, Antonio R. C.</creatorcontrib><creatorcontrib>Ellisman, Mark H.</creatorcontrib><creatorcontrib>Jorgensen, Erik M.</creatorcontrib><creatorcontrib>Tasdizen, Tolga</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Semi-Automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images</title><title>Neuroinformatics (Totowa, N.J.)</title><addtitle>Neuroinform</addtitle><addtitle>Neuroinformatics</addtitle><description>Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated process first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes.</description><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Boundaries</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Connectionism. Neural networks</subject><subject>Connectome - methods</subject><subject>Connectomics</subject><subject>Data processing</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Electron Microscopy</subject><subject>Exact sciences and technology</subject><subject>Feature Detection</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Information, signal and communications theory</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Nervous system</subject><subject>Neural Networks, Computer</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurons - ultrastructure</subject><subject>Neurosciences</subject><subject>Original Article</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Segmentation</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Software</subject><subject>Telecommunications and information theory</subject><subject>User-Computer Interface</subject><issn>1539-2791</issn><issn>1559-0089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNktuK1TAUhosozkEfwBspyoA31ZVDk_ZmYBxHHRgPMHod0nS1O0ObbJNW2G9varfjKAheJWR96_Tnz7InBF4SAPkqEgqUFEBoURNeF7t72SEpy7oAqOr7y53VBZU1OciOYrwBoEICPMwOKBWcV0IeZsM1jrY4myc_6gnb_CPOwbv8tZ9dq8Muf4MTmsmmJ-1S1LsmaGc21vX55-ANxphfYz-im_RPyrr8YkgZS5EP1gQfjd_u8stR9xgfZQ86PUR8vD-Ps69vL76cvy-uPr27PD-7KkwpYCoYM63k0FXVMmULrNTa8FZTKbDChreUNKaDtmEUEMoWsJZN2TRUm06WhLLj7HStu52bEVuTpgt6UNtgx7ST8tqqPyPOblTvvyuWZBQlTwWerQV8nKyKxiYRNsY7lzZTBARALRP0Yt8l-G8zxkmNNhocBu3Qz1ERWhMBZUXhP1DJqKAlW1o__wu98XNwSa5ECcErzsXSm6zUonAM2N0uR0At3lCrN1Tyhlq8oXYp5-ldVW4zfpkhASd7QEejh275aRt_c5IwIRhLHF25mEKux3BnxH92_wFZedLU</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Jurrus, Elizabeth</creator><creator>Watanabe, Shigeki</creator><creator>Giuly, Richard J.</creator><creator>Paiva, Antonio R. C.</creator><creator>Ellisman, Mark H.</creator><creator>Jorgensen, Erik M.</creator><creator>Tasdizen, Tolga</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>2013</creationdate><title>Semi-Automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images</title><author>Jurrus, Elizabeth ; Watanabe, Shigeki ; Giuly, Richard J. ; Paiva, Antonio R. C. ; Ellisman, Mark H. ; Jorgensen, Erik M. ; Tasdizen, Tolga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-33cd740f886448d035aac4da276e8eb4d21bcf0db320e05d0e97b5bb2acf75123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Boundaries</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Connectionism. Neural networks</topic><topic>Connectome - methods</topic><topic>Connectomics</topic><topic>Data processing</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Electron Microscopy</topic><topic>Exact sciences and technology</topic><topic>Feature Detection</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Information, signal and communications theory</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Nervous system</topic><topic>Neural Networks, Computer</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurons - ultrastructure</topic><topic>Neurosciences</topic><topic>Original Article</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Segmentation</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Software</topic><topic>Telecommunications and information theory</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jurrus, Elizabeth</creatorcontrib><creatorcontrib>Watanabe, Shigeki</creatorcontrib><creatorcontrib>Giuly, Richard J.</creatorcontrib><creatorcontrib>Paiva, Antonio R. C.</creatorcontrib><creatorcontrib>Ellisman, Mark H.</creatorcontrib><creatorcontrib>Jorgensen, Erik M.</creatorcontrib><creatorcontrib>Tasdizen, Tolga</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jurrus, Elizabeth</au><au>Watanabe, Shigeki</au><au>Giuly, Richard J.</au><au>Paiva, Antonio R. C.</au><au>Ellisman, Mark H.</au><au>Jorgensen, Erik M.</au><au>Tasdizen, Tolga</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-Automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images</atitle><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle><stitle>Neuroinform</stitle><addtitle>Neuroinformatics</addtitle><date>2013</date><risdate>2013</risdate><volume>11</volume><issue>1</issue><spage>5</spage><epage>29</epage><pages>5-29</pages><issn>1539-2791</issn><eissn>1559-0089</eissn><abstract>Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated process first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>22644867</pmid><doi>10.1007/s12021-012-9149-y</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-2791
ispartof Neuroinformatics (Totowa, N.J.), 2013, Vol.11 (1), p.5-29
issn 1539-2791
1559-0089
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3914654
source MEDLINE; SpringerLink Journals
subjects Applied sciences
Artificial Intelligence
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Boundaries
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Connectionism. Neural networks
Connectome - methods
Connectomics
Data processing
Detection, estimation, filtering, equalization, prediction
Electron Microscopy
Exact sciences and technology
Feature Detection
Humans
Image Interpretation, Computer-Assisted - methods
Image Processing
Image Processing, Computer-Assisted - methods
Information, signal and communications theory
Learning algorithms
Machine Learning
Microscopy, Electron, Transmission - methods
Nervous system
Neural Networks, Computer
Neurology
Neurons
Neurons - ultrastructure
Neurosciences
Original Article
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Segmentation
Signal and communications theory
Signal, noise
Software
Telecommunications and information theory
User-Computer Interface
title Semi-Automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-Automated%20Neuron%20Boundary%20Detection%20and%20Nonbranching%20Process%20Segmentation%20in%20Electron%20Microscopy%20Images&rft.jtitle=Neuroinformatics%20(Totowa,%20N.J.)&rft.au=Jurrus,%20Elizabeth&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2013&rft.volume=11&rft.issue=1&rft.spage=5&rft.epage=29&rft.pages=5-29&rft.issn=1539-2791&rft.eissn=1559-0089&rft_id=info:doi/10.1007/s12021-012-9149-y&rft_dat=%3Cproquest_pubme%3E2857573881%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266484467&rft_id=info:pmid/22644867&rfr_iscdi=true