Semi-Automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images
Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniqu...
Gespeichert in:
Veröffentlicht in: | Neuroinformatics (Totowa, N.J.) N.J.), 2013, Vol.11 (1), p.5-29 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29 |
---|---|
container_issue | 1 |
container_start_page | 5 |
container_title | Neuroinformatics (Totowa, N.J.) |
container_volume | 11 |
creator | Jurrus, Elizabeth Watanabe, Shigeki Giuly, Richard J. Paiva, Antonio R. C. Ellisman, Mark H. Jorgensen, Erik M. Tasdizen, Tolga |
description | Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated process first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes. |
doi_str_mv | 10.1007/s12021-012-9149-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3914654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2857573881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-33cd740f886448d035aac4da276e8eb4d21bcf0db320e05d0e97b5bb2acf75123</originalsourceid><addsrcrecordid>eNqNktuK1TAUhosozkEfwBspyoA31ZVDk_ZmYBxHHRgPMHod0nS1O0ObbJNW2G9varfjKAheJWR96_Tnz7InBF4SAPkqEgqUFEBoURNeF7t72SEpy7oAqOr7y53VBZU1OciOYrwBoEICPMwOKBWcV0IeZsM1jrY4myc_6gnb_CPOwbv8tZ9dq8Muf4MTmsmmJ-1S1LsmaGc21vX55-ANxphfYz-im_RPyrr8YkgZS5EP1gQfjd_u8stR9xgfZQ86PUR8vD-Ps69vL76cvy-uPr27PD-7KkwpYCoYM63k0FXVMmULrNTa8FZTKbDChreUNKaDtmEUEMoWsJZN2TRUm06WhLLj7HStu52bEVuTpgt6UNtgx7ST8tqqPyPOblTvvyuWZBQlTwWerQV8nKyKxiYRNsY7lzZTBARALRP0Yt8l-G8zxkmNNhocBu3Qz1ERWhMBZUXhP1DJqKAlW1o__wu98XNwSa5ECcErzsXSm6zUonAM2N0uR0At3lCrN1Tyhlq8oXYp5-ldVW4zfpkhASd7QEejh275aRt_c5IwIRhLHF25mEKux3BnxH92_wFZedLU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266484467</pqid></control><display><type>article</type><title>Semi-Automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Jurrus, Elizabeth ; Watanabe, Shigeki ; Giuly, Richard J. ; Paiva, Antonio R. C. ; Ellisman, Mark H. ; Jorgensen, Erik M. ; Tasdizen, Tolga</creator><creatorcontrib>Jurrus, Elizabeth ; Watanabe, Shigeki ; Giuly, Richard J. ; Paiva, Antonio R. C. ; Ellisman, Mark H. ; Jorgensen, Erik M. ; Tasdizen, Tolga ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated process first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes.</description><identifier>ISSN: 1539-2791</identifier><identifier>EISSN: 1559-0089</identifier><identifier>DOI: 10.1007/s12021-012-9149-y</identifier><identifier>PMID: 22644867</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Applied sciences ; Artificial Intelligence ; Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Boundaries ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Connectionism. Neural networks ; Connectome - methods ; Connectomics ; Data processing ; Detection, estimation, filtering, equalization, prediction ; Electron Microscopy ; Exact sciences and technology ; Feature Detection ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image Processing ; Image Processing, Computer-Assisted - methods ; Information, signal and communications theory ; Learning algorithms ; Machine Learning ; Microscopy, Electron, Transmission - methods ; Nervous system ; Neural Networks, Computer ; Neurology ; Neurons ; Neurons - ultrastructure ; Neurosciences ; Original Article ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Segmentation ; Signal and communications theory ; Signal, noise ; Software ; Telecommunications and information theory ; User-Computer Interface</subject><ispartof>Neuroinformatics (Totowa, N.J.), 2013, Vol.11 (1), p.5-29</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>2014 INIST-CNRS</rights><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-33cd740f886448d035aac4da276e8eb4d21bcf0db320e05d0e97b5bb2acf75123</citedby><cites>FETCH-LOGICAL-c560t-33cd740f886448d035aac4da276e8eb4d21bcf0db320e05d0e97b5bb2acf75123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12021-012-9149-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12021-012-9149-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27136633$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22644867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1060097$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jurrus, Elizabeth</creatorcontrib><creatorcontrib>Watanabe, Shigeki</creatorcontrib><creatorcontrib>Giuly, Richard J.</creatorcontrib><creatorcontrib>Paiva, Antonio R. C.</creatorcontrib><creatorcontrib>Ellisman, Mark H.</creatorcontrib><creatorcontrib>Jorgensen, Erik M.</creatorcontrib><creatorcontrib>Tasdizen, Tolga</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Semi-Automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images</title><title>Neuroinformatics (Totowa, N.J.)</title><addtitle>Neuroinform</addtitle><addtitle>Neuroinformatics</addtitle><description>Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated process first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes.</description><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Boundaries</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Connectionism. Neural networks</subject><subject>Connectome - methods</subject><subject>Connectomics</subject><subject>Data processing</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Electron Microscopy</subject><subject>Exact sciences and technology</subject><subject>Feature Detection</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Information, signal and communications theory</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Nervous system</subject><subject>Neural Networks, Computer</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurons - ultrastructure</subject><subject>Neurosciences</subject><subject>Original Article</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Segmentation</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Software</subject><subject>Telecommunications and information theory</subject><subject>User-Computer Interface</subject><issn>1539-2791</issn><issn>1559-0089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNktuK1TAUhosozkEfwBspyoA31ZVDk_ZmYBxHHRgPMHod0nS1O0ObbJNW2G9varfjKAheJWR96_Tnz7InBF4SAPkqEgqUFEBoURNeF7t72SEpy7oAqOr7y53VBZU1OciOYrwBoEICPMwOKBWcV0IeZsM1jrY4myc_6gnb_CPOwbv8tZ9dq8Muf4MTmsmmJ-1S1LsmaGc21vX55-ANxphfYz-im_RPyrr8YkgZS5EP1gQfjd_u8stR9xgfZQ86PUR8vD-Ps69vL76cvy-uPr27PD-7KkwpYCoYM63k0FXVMmULrNTa8FZTKbDChreUNKaDtmEUEMoWsJZN2TRUm06WhLLj7HStu52bEVuTpgt6UNtgx7ST8tqqPyPOblTvvyuWZBQlTwWerQV8nKyKxiYRNsY7lzZTBARALRP0Yt8l-G8zxkmNNhocBu3Qz1ERWhMBZUXhP1DJqKAlW1o__wu98XNwSa5ECcErzsXSm6zUonAM2N0uR0At3lCrN1Tyhlq8oXYp5-ldVW4zfpkhASd7QEejh275aRt_c5IwIRhLHF25mEKux3BnxH92_wFZedLU</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Jurrus, Elizabeth</creator><creator>Watanabe, Shigeki</creator><creator>Giuly, Richard J.</creator><creator>Paiva, Antonio R. C.</creator><creator>Ellisman, Mark H.</creator><creator>Jorgensen, Erik M.</creator><creator>Tasdizen, Tolga</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>2013</creationdate><title>Semi-Automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images</title><author>Jurrus, Elizabeth ; Watanabe, Shigeki ; Giuly, Richard J. ; Paiva, Antonio R. C. ; Ellisman, Mark H. ; Jorgensen, Erik M. ; Tasdizen, Tolga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-33cd740f886448d035aac4da276e8eb4d21bcf0db320e05d0e97b5bb2acf75123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Boundaries</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Connectionism. Neural networks</topic><topic>Connectome - methods</topic><topic>Connectomics</topic><topic>Data processing</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Electron Microscopy</topic><topic>Exact sciences and technology</topic><topic>Feature Detection</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Information, signal and communications theory</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Nervous system</topic><topic>Neural Networks, Computer</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurons - ultrastructure</topic><topic>Neurosciences</topic><topic>Original Article</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Segmentation</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Software</topic><topic>Telecommunications and information theory</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jurrus, Elizabeth</creatorcontrib><creatorcontrib>Watanabe, Shigeki</creatorcontrib><creatorcontrib>Giuly, Richard J.</creatorcontrib><creatorcontrib>Paiva, Antonio R. C.</creatorcontrib><creatorcontrib>Ellisman, Mark H.</creatorcontrib><creatorcontrib>Jorgensen, Erik M.</creatorcontrib><creatorcontrib>Tasdizen, Tolga</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jurrus, Elizabeth</au><au>Watanabe, Shigeki</au><au>Giuly, Richard J.</au><au>Paiva, Antonio R. C.</au><au>Ellisman, Mark H.</au><au>Jorgensen, Erik M.</au><au>Tasdizen, Tolga</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-Automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images</atitle><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle><stitle>Neuroinform</stitle><addtitle>Neuroinformatics</addtitle><date>2013</date><risdate>2013</risdate><volume>11</volume><issue>1</issue><spage>5</spage><epage>29</epage><pages>5-29</pages><issn>1539-2791</issn><eissn>1559-0089</eissn><abstract>Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated process first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>22644867</pmid><doi>10.1007/s12021-012-9149-y</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-2791 |
ispartof | Neuroinformatics (Totowa, N.J.), 2013, Vol.11 (1), p.5-29 |
issn | 1539-2791 1559-0089 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3914654 |
source | MEDLINE; SpringerLink Journals |
subjects | Applied sciences Artificial Intelligence Bioinformatics Biomedical and Life Sciences Biomedicine Boundaries Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer science control theory systems Computer systems and distributed systems. User interface Connectionism. Neural networks Connectome - methods Connectomics Data processing Detection, estimation, filtering, equalization, prediction Electron Microscopy Exact sciences and technology Feature Detection Humans Image Interpretation, Computer-Assisted - methods Image Processing Image Processing, Computer-Assisted - methods Information, signal and communications theory Learning algorithms Machine Learning Microscopy, Electron, Transmission - methods Nervous system Neural Networks, Computer Neurology Neurons Neurons - ultrastructure Neurosciences Original Article Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Segmentation Signal and communications theory Signal, noise Software Telecommunications and information theory User-Computer Interface |
title | Semi-Automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-Automated%20Neuron%20Boundary%20Detection%20and%20Nonbranching%20Process%20Segmentation%20in%20Electron%20Microscopy%20Images&rft.jtitle=Neuroinformatics%20(Totowa,%20N.J.)&rft.au=Jurrus,%20Elizabeth&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2013&rft.volume=11&rft.issue=1&rft.spage=5&rft.epage=29&rft.pages=5-29&rft.issn=1539-2791&rft.eissn=1559-0089&rft_id=info:doi/10.1007/s12021-012-9149-y&rft_dat=%3Cproquest_pubme%3E2857573881%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266484467&rft_id=info:pmid/22644867&rfr_iscdi=true |