The oxygen isotope enrichment of leaf-exported assimilates – does it always reflect lamina leaf water enrichment?
The oxygen stable isotope composition of plant organic matter (OM) (particularly of wood and cellulose in the tree ring archive) is valuable in studies of plant–climate interaction, but there is a lack of information on the transfer of the isotope signal from the leaf to heterotrophic tissues. We st...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2013-10, Vol.200 (1), p.144-157 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 157 |
---|---|
container_issue | 1 |
container_start_page | 144 |
container_title | The New phytologist |
container_volume | 200 |
creator | Gessler, Arthur Brandes, Elke Keitel, Claudia Boda, Sonja Kayler, Zachary E. Granier, André Barbour, Margaret Farquhar, Graham D. Treydte, Kerstin |
description | The oxygen stable isotope composition of plant organic matter (OM) (particularly of wood and cellulose in the tree ring archive) is valuable in studies of plant–climate interaction, but there is a lack of information on the transfer of the isotope signal from the leaf to heterotrophic tissues.
We studied the oxygen isotopic composition and its enrichment above source water of leaf water over diel courses in five tree species covering a broad range of life forms. We tracked the transfer of the isotopic signal to leaf water-soluble OM and further to phloem-transported OM.
Observed leaf water evaporative enrichment was consistent with values predicted from mechanistic models taking into account nonsteady-state conditions. While leaf water-soluble OM showed the expected 18O enrichment in all species, phloem sugars were less enriched than expected from leaf water enrichment in Scots pine (Pinus sylvestris), European larch (Larix decidua) and Alpine ash (Eucalyptus delegatensis).
Oxygen atom exchange with nonenriched water during phloem loading and transport, as well as a significant contribution of assimilates from bark photosynthesis, can explain these phloem 18O enrichment patterns. Our results indicate species-specific uncoupling between the leaf water and the OM oxygen isotope signal, which is important for the interpretation of tree ring data. |
doi_str_mv | 10.1111/nph.12359 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3902987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.200.1.144</jstor_id><sourcerecordid>newphytologist.200.1.144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5769-fd97f5417bc9706962d39e8eca3ab6e937562f28edb908ed1f6ea41ecabb56503</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxi0EokvhwAsgS1zgkNZ_Eju-gKoKWKQVcCgSN8tJJhuvnDjY2W73xjvwhjwJ3m67lErgg23Zv_nmm9Eg9JySE5rW6TB2J5TxQj1AM5oLlZWUy4doRggrM5GLb0foSYwrQogqBHuMjhiXggsuZyhedID91XYJA7bRT34EDEOwddfDMGHfYgemzeBq9GGCBpsYbW-dmSDiXz9-4sani52wcRuzjThA66CesDO9Hcx1LN4kONwRffsUPWqNi_Ds5jxGX9-_uzifZ4vPHz6eny2yupCpiLZRsi1yKqtaSSKUYA1XUEJtuKkEKC5TMS0roakUSTttBZicpv-qKkRB-DF6s9cd11UPTZ1yB-P0GGxvwlZ7Y_XfP4Pt9NJfaq4IU6VMAq_3At29sPnZQu_eCGWiJIpf0sS-ukkW_Pc1xEn3NtbgnBnAr6OmyayQnMsyoS_voSu_DkNqhWYF5bykRMr_UTRncgdx_sdiHXyMqf0Hn5To3XDoNBz6ejgS--JuPw7k7TQk4HQPbKyD7b-V9Kcv81vJbB-xipMPh4gBNmO3nbzzS5uMM5IUkuuc_wZaoNXV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1427810733</pqid></control><display><type>article</type><title>The oxygen isotope enrichment of leaf-exported assimilates – does it always reflect lamina leaf water enrichment?</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Gessler, Arthur ; Brandes, Elke ; Keitel, Claudia ; Boda, Sonja ; Kayler, Zachary E. ; Granier, André ; Barbour, Margaret ; Farquhar, Graham D. ; Treydte, Kerstin</creator><creatorcontrib>Gessler, Arthur ; Brandes, Elke ; Keitel, Claudia ; Boda, Sonja ; Kayler, Zachary E. ; Granier, André ; Barbour, Margaret ; Farquhar, Graham D. ; Treydte, Kerstin</creatorcontrib><description>The oxygen stable isotope composition of plant organic matter (OM) (particularly of wood and cellulose in the tree ring archive) is valuable in studies of plant–climate interaction, but there is a lack of information on the transfer of the isotope signal from the leaf to heterotrophic tissues.
We studied the oxygen isotopic composition and its enrichment above source water of leaf water over diel courses in five tree species covering a broad range of life forms. We tracked the transfer of the isotopic signal to leaf water-soluble OM and further to phloem-transported OM.
Observed leaf water evaporative enrichment was consistent with values predicted from mechanistic models taking into account nonsteady-state conditions. While leaf water-soluble OM showed the expected 18O enrichment in all species, phloem sugars were less enriched than expected from leaf water enrichment in Scots pine (Pinus sylvestris), European larch (Larix decidua) and Alpine ash (Eucalyptus delegatensis).
Oxygen atom exchange with nonenriched water during phloem loading and transport, as well as a significant contribution of assimilates from bark photosynthesis, can explain these phloem 18O enrichment patterns. Our results indicate species-specific uncoupling between the leaf water and the OM oxygen isotope signal, which is important for the interpretation of tree ring data.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.12359</identifier><identifier>PMID: 23763637</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>Archives & records ; Atoms ; Bark ; Biological Transport ; broadleaf ; Carbohydrates - chemistry ; Cellulose ; Cellulose - chemistry ; Chemical composition ; Climate Change ; conifer ; diel course ; Eucalyptus ; Eucalyptus - chemistry ; Eucalyptus - physiology ; Growth rings ; Hardwoods ; Isotope composition ; Isotopes ; Larix - chemistry ; Larix - physiology ; Larix decidua ; Leaves ; Life Sciences ; Organic matter ; Oxygen ; Oxygen - physiology ; oxygen atom exchange ; Oxygen enrichment ; Oxygen isotopes ; Oxygen Isotopes - chemistry ; Phloem ; Phloem - chemistry ; Phloem - physiology ; phloem transport ; Photosynthesis ; Pine trees ; Pinus sylvestris ; Pinus sylvestris - chemistry ; Pinus sylvestris - physiology ; Plant cells ; Plant Leaves - chemistry ; Plant Leaves - physiology ; Plant species ; Plants ; Signal Transduction ; Species ; Stable isotopes ; Sugar ; Sugars ; Tree rings ; Trees - chemistry ; Trees - physiology ; Water ; Water - chemistry ; Water - physiology ; Wood - chemistry ; Wood - physiology ; Xylem</subject><ispartof>The New phytologist, 2013-10, Vol.200 (1), p.144-157</ispartof><rights>2013 New Phytologist Trust</rights><rights>2013 The Authors. New Phytologist © 2013 New Phytologist Trust</rights><rights>2013 The Authors. New Phytologist © 2013 New Phytologist Trust.</rights><rights>Copyright © 2013 New Phytologist Trust</rights><rights>2013. This article is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2013 The Authors New Phytologist © 2013 New Phytologist Trust 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5769-fd97f5417bc9706962d39e8eca3ab6e937562f28edb908ed1f6ea41ecabb56503</citedby><cites>FETCH-LOGICAL-c5769-fd97f5417bc9706962d39e8eca3ab6e937562f28edb908ed1f6ea41ecabb56503</cites><orcidid>0000-0002-1910-9589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.200.1.144$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.200.1.144$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,781,785,804,886,1418,1434,27929,27930,45579,45580,46414,46838,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23763637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01268093$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gessler, Arthur</creatorcontrib><creatorcontrib>Brandes, Elke</creatorcontrib><creatorcontrib>Keitel, Claudia</creatorcontrib><creatorcontrib>Boda, Sonja</creatorcontrib><creatorcontrib>Kayler, Zachary E.</creatorcontrib><creatorcontrib>Granier, André</creatorcontrib><creatorcontrib>Barbour, Margaret</creatorcontrib><creatorcontrib>Farquhar, Graham D.</creatorcontrib><creatorcontrib>Treydte, Kerstin</creatorcontrib><title>The oxygen isotope enrichment of leaf-exported assimilates – does it always reflect lamina leaf water enrichment?</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>The oxygen stable isotope composition of plant organic matter (OM) (particularly of wood and cellulose in the tree ring archive) is valuable in studies of plant–climate interaction, but there is a lack of information on the transfer of the isotope signal from the leaf to heterotrophic tissues.
We studied the oxygen isotopic composition and its enrichment above source water of leaf water over diel courses in five tree species covering a broad range of life forms. We tracked the transfer of the isotopic signal to leaf water-soluble OM and further to phloem-transported OM.
Observed leaf water evaporative enrichment was consistent with values predicted from mechanistic models taking into account nonsteady-state conditions. While leaf water-soluble OM showed the expected 18O enrichment in all species, phloem sugars were less enriched than expected from leaf water enrichment in Scots pine (Pinus sylvestris), European larch (Larix decidua) and Alpine ash (Eucalyptus delegatensis).
Oxygen atom exchange with nonenriched water during phloem loading and transport, as well as a significant contribution of assimilates from bark photosynthesis, can explain these phloem 18O enrichment patterns. Our results indicate species-specific uncoupling between the leaf water and the OM oxygen isotope signal, which is important for the interpretation of tree ring data.</description><subject>Archives & records</subject><subject>Atoms</subject><subject>Bark</subject><subject>Biological Transport</subject><subject>broadleaf</subject><subject>Carbohydrates - chemistry</subject><subject>Cellulose</subject><subject>Cellulose - chemistry</subject><subject>Chemical composition</subject><subject>Climate Change</subject><subject>conifer</subject><subject>diel course</subject><subject>Eucalyptus</subject><subject>Eucalyptus - chemistry</subject><subject>Eucalyptus - physiology</subject><subject>Growth rings</subject><subject>Hardwoods</subject><subject>Isotope composition</subject><subject>Isotopes</subject><subject>Larix - chemistry</subject><subject>Larix - physiology</subject><subject>Larix decidua</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Organic matter</subject><subject>Oxygen</subject><subject>Oxygen - physiology</subject><subject>oxygen atom exchange</subject><subject>Oxygen enrichment</subject><subject>Oxygen isotopes</subject><subject>Oxygen Isotopes - chemistry</subject><subject>Phloem</subject><subject>Phloem - chemistry</subject><subject>Phloem - physiology</subject><subject>phloem transport</subject><subject>Photosynthesis</subject><subject>Pine trees</subject><subject>Pinus sylvestris</subject><subject>Pinus sylvestris - chemistry</subject><subject>Pinus sylvestris - physiology</subject><subject>Plant cells</subject><subject>Plant Leaves - chemistry</subject><subject>Plant Leaves - physiology</subject><subject>Plant species</subject><subject>Plants</subject><subject>Signal Transduction</subject><subject>Species</subject><subject>Stable isotopes</subject><subject>Sugar</subject><subject>Sugars</subject><subject>Tree rings</subject><subject>Trees - chemistry</subject><subject>Trees - physiology</subject><subject>Water</subject><subject>Water - chemistry</subject><subject>Water - physiology</subject><subject>Wood - chemistry</subject><subject>Wood - physiology</subject><subject>Xylem</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9ks9u1DAQxi0EokvhwAsgS1zgkNZ_Eju-gKoKWKQVcCgSN8tJJhuvnDjY2W73xjvwhjwJ3m67lErgg23Zv_nmm9Eg9JySE5rW6TB2J5TxQj1AM5oLlZWUy4doRggrM5GLb0foSYwrQogqBHuMjhiXggsuZyhedID91XYJA7bRT34EDEOwddfDMGHfYgemzeBq9GGCBpsYbW-dmSDiXz9-4sani52wcRuzjThA66CesDO9Hcx1LN4kONwRffsUPWqNi_Ds5jxGX9-_uzifZ4vPHz6eny2yupCpiLZRsi1yKqtaSSKUYA1XUEJtuKkEKC5TMS0roakUSTttBZicpv-qKkRB-DF6s9cd11UPTZ1yB-P0GGxvwlZ7Y_XfP4Pt9NJfaq4IU6VMAq_3At29sPnZQu_eCGWiJIpf0sS-ukkW_Pc1xEn3NtbgnBnAr6OmyayQnMsyoS_voSu_DkNqhWYF5bykRMr_UTRncgdx_sdiHXyMqf0Hn5To3XDoNBz6ejgS--JuPw7k7TQk4HQPbKyD7b-V9Kcv81vJbB-xipMPh4gBNmO3nbzzS5uMM5IUkuuc_wZaoNXV</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Gessler, Arthur</creator><creator>Brandes, Elke</creator><creator>Keitel, Claudia</creator><creator>Boda, Sonja</creator><creator>Kayler, Zachary E.</creator><creator>Granier, André</creator><creator>Barbour, Margaret</creator><creator>Farquhar, Graham D.</creator><creator>Treydte, Kerstin</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QH</scope><scope>7UA</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1910-9589</orcidid></search><sort><creationdate>201310</creationdate><title>The oxygen isotope enrichment of leaf-exported assimilates – does it always reflect lamina leaf water enrichment?</title><author>Gessler, Arthur ; Brandes, Elke ; Keitel, Claudia ; Boda, Sonja ; Kayler, Zachary E. ; Granier, André ; Barbour, Margaret ; Farquhar, Graham D. ; Treydte, Kerstin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5769-fd97f5417bc9706962d39e8eca3ab6e937562f28edb908ed1f6ea41ecabb56503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Archives & records</topic><topic>Atoms</topic><topic>Bark</topic><topic>Biological Transport</topic><topic>broadleaf</topic><topic>Carbohydrates - chemistry</topic><topic>Cellulose</topic><topic>Cellulose - chemistry</topic><topic>Chemical composition</topic><topic>Climate Change</topic><topic>conifer</topic><topic>diel course</topic><topic>Eucalyptus</topic><topic>Eucalyptus - chemistry</topic><topic>Eucalyptus - physiology</topic><topic>Growth rings</topic><topic>Hardwoods</topic><topic>Isotope composition</topic><topic>Isotopes</topic><topic>Larix - chemistry</topic><topic>Larix - physiology</topic><topic>Larix decidua</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Organic matter</topic><topic>Oxygen</topic><topic>Oxygen - physiology</topic><topic>oxygen atom exchange</topic><topic>Oxygen enrichment</topic><topic>Oxygen isotopes</topic><topic>Oxygen Isotopes - chemistry</topic><topic>Phloem</topic><topic>Phloem - chemistry</topic><topic>Phloem - physiology</topic><topic>phloem transport</topic><topic>Photosynthesis</topic><topic>Pine trees</topic><topic>Pinus sylvestris</topic><topic>Pinus sylvestris - chemistry</topic><topic>Pinus sylvestris - physiology</topic><topic>Plant cells</topic><topic>Plant Leaves - chemistry</topic><topic>Plant Leaves - physiology</topic><topic>Plant species</topic><topic>Plants</topic><topic>Signal Transduction</topic><topic>Species</topic><topic>Stable isotopes</topic><topic>Sugar</topic><topic>Sugars</topic><topic>Tree rings</topic><topic>Trees - chemistry</topic><topic>Trees - physiology</topic><topic>Water</topic><topic>Water - chemistry</topic><topic>Water - physiology</topic><topic>Wood - chemistry</topic><topic>Wood - physiology</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gessler, Arthur</creatorcontrib><creatorcontrib>Brandes, Elke</creatorcontrib><creatorcontrib>Keitel, Claudia</creatorcontrib><creatorcontrib>Boda, Sonja</creatorcontrib><creatorcontrib>Kayler, Zachary E.</creatorcontrib><creatorcontrib>Granier, André</creatorcontrib><creatorcontrib>Barbour, Margaret</creatorcontrib><creatorcontrib>Farquhar, Graham D.</creatorcontrib><creatorcontrib>Treydte, Kerstin</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gessler, Arthur</au><au>Brandes, Elke</au><au>Keitel, Claudia</au><au>Boda, Sonja</au><au>Kayler, Zachary E.</au><au>Granier, André</au><au>Barbour, Margaret</au><au>Farquhar, Graham D.</au><au>Treydte, Kerstin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The oxygen isotope enrichment of leaf-exported assimilates – does it always reflect lamina leaf water enrichment?</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2013-10</date><risdate>2013</risdate><volume>200</volume><issue>1</issue><spage>144</spage><epage>157</epage><pages>144-157</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>The oxygen stable isotope composition of plant organic matter (OM) (particularly of wood and cellulose in the tree ring archive) is valuable in studies of plant–climate interaction, but there is a lack of information on the transfer of the isotope signal from the leaf to heterotrophic tissues.
We studied the oxygen isotopic composition and its enrichment above source water of leaf water over diel courses in five tree species covering a broad range of life forms. We tracked the transfer of the isotopic signal to leaf water-soluble OM and further to phloem-transported OM.
Observed leaf water evaporative enrichment was consistent with values predicted from mechanistic models taking into account nonsteady-state conditions. While leaf water-soluble OM showed the expected 18O enrichment in all species, phloem sugars were less enriched than expected from leaf water enrichment in Scots pine (Pinus sylvestris), European larch (Larix decidua) and Alpine ash (Eucalyptus delegatensis).
Oxygen atom exchange with nonenriched water during phloem loading and transport, as well as a significant contribution of assimilates from bark photosynthesis, can explain these phloem 18O enrichment patterns. Our results indicate species-specific uncoupling between the leaf water and the OM oxygen isotope signal, which is important for the interpretation of tree ring data.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>23763637</pmid><doi>10.1111/nph.12359</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1910-9589</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2013-10, Vol.200 (1), p.144-157 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3902987 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; IngentaConnect Free/Open Access Journals; Wiley Online Library (Open Access Collection) |
subjects | Archives & records Atoms Bark Biological Transport broadleaf Carbohydrates - chemistry Cellulose Cellulose - chemistry Chemical composition Climate Change conifer diel course Eucalyptus Eucalyptus - chemistry Eucalyptus - physiology Growth rings Hardwoods Isotope composition Isotopes Larix - chemistry Larix - physiology Larix decidua Leaves Life Sciences Organic matter Oxygen Oxygen - physiology oxygen atom exchange Oxygen enrichment Oxygen isotopes Oxygen Isotopes - chemistry Phloem Phloem - chemistry Phloem - physiology phloem transport Photosynthesis Pine trees Pinus sylvestris Pinus sylvestris - chemistry Pinus sylvestris - physiology Plant cells Plant Leaves - chemistry Plant Leaves - physiology Plant species Plants Signal Transduction Species Stable isotopes Sugar Sugars Tree rings Trees - chemistry Trees - physiology Water Water - chemistry Water - physiology Wood - chemistry Wood - physiology Xylem |
title | The oxygen isotope enrichment of leaf-exported assimilates – does it always reflect lamina leaf water enrichment? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T13%3A25%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20oxygen%20isotope%20enrichment%20of%20leaf-exported%20assimilates%20%E2%80%93%20does%20it%20always%20reflect%20lamina%20leaf%20water%20enrichment?&rft.jtitle=The%20New%20phytologist&rft.au=Gessler,%20Arthur&rft.date=2013-10&rft.volume=200&rft.issue=1&rft.spage=144&rft.epage=157&rft.pages=144-157&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.12359&rft_dat=%3Cjstor_pubme%3Enewphytologist.200.1.144%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1427810733&rft_id=info:pmid/23763637&rft_jstor_id=newphytologist.200.1.144&rfr_iscdi=true |