The oxygen isotope enrichment of leaf-exported assimilates – does it always reflect lamina leaf water enrichment?

The oxygen stable isotope composition of plant organic matter (OM) (particularly of wood and cellulose in the tree ring archive) is valuable in studies of plant–climate interaction, but there is a lack of information on the transfer of the isotope signal from the leaf to heterotrophic tissues. We st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2013-10, Vol.200 (1), p.144-157
Hauptverfasser: Gessler, Arthur, Brandes, Elke, Keitel, Claudia, Boda, Sonja, Kayler, Zachary E., Granier, André, Barbour, Margaret, Farquhar, Graham D., Treydte, Kerstin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 157
container_issue 1
container_start_page 144
container_title The New phytologist
container_volume 200
creator Gessler, Arthur
Brandes, Elke
Keitel, Claudia
Boda, Sonja
Kayler, Zachary E.
Granier, André
Barbour, Margaret
Farquhar, Graham D.
Treydte, Kerstin
description The oxygen stable isotope composition of plant organic matter (OM) (particularly of wood and cellulose in the tree ring archive) is valuable in studies of plant–climate interaction, but there is a lack of information on the transfer of the isotope signal from the leaf to heterotrophic tissues. We studied the oxygen isotopic composition and its enrichment above source water of leaf water over diel courses in five tree species covering a broad range of life forms. We tracked the transfer of the isotopic signal to leaf water-soluble OM and further to phloem-transported OM. Observed leaf water evaporative enrichment was consistent with values predicted from mechanistic models taking into account nonsteady-state conditions. While leaf water-soluble OM showed the expected 18O enrichment in all species, phloem sugars were less enriched than expected from leaf water enrichment in Scots pine (Pinus sylvestris), European larch (Larix decidua) and Alpine ash (Eucalyptus delegatensis). Oxygen atom exchange with nonenriched water during phloem loading and transport, as well as a significant contribution of assimilates from bark photosynthesis, can explain these phloem 18O enrichment patterns. Our results indicate species-specific uncoupling between the leaf water and the OM oxygen isotope signal, which is important for the interpretation of tree ring data.
doi_str_mv 10.1111/nph.12359
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3902987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.200.1.144</jstor_id><sourcerecordid>newphytologist.200.1.144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5769-fd97f5417bc9706962d39e8eca3ab6e937562f28edb908ed1f6ea41ecabb56503</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxi0EokvhwAsgS1zgkNZ_Eju-gKoKWKQVcCgSN8tJJhuvnDjY2W73xjvwhjwJ3m67lErgg23Zv_nmm9Eg9JySE5rW6TB2J5TxQj1AM5oLlZWUy4doRggrM5GLb0foSYwrQogqBHuMjhiXggsuZyhedID91XYJA7bRT34EDEOwddfDMGHfYgemzeBq9GGCBpsYbW-dmSDiXz9-4sani52wcRuzjThA66CesDO9Hcx1LN4kONwRffsUPWqNi_Ds5jxGX9-_uzifZ4vPHz6eny2yupCpiLZRsi1yKqtaSSKUYA1XUEJtuKkEKC5TMS0roakUSTttBZicpv-qKkRB-DF6s9cd11UPTZ1yB-P0GGxvwlZ7Y_XfP4Pt9NJfaq4IU6VMAq_3At29sPnZQu_eCGWiJIpf0sS-ukkW_Pc1xEn3NtbgnBnAr6OmyayQnMsyoS_voSu_DkNqhWYF5bykRMr_UTRncgdx_sdiHXyMqf0Hn5To3XDoNBz6ejgS--JuPw7k7TQk4HQPbKyD7b-V9Kcv81vJbB-xipMPh4gBNmO3nbzzS5uMM5IUkuuc_wZaoNXV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1427810733</pqid></control><display><type>article</type><title>The oxygen isotope enrichment of leaf-exported assimilates – does it always reflect lamina leaf water enrichment?</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Gessler, Arthur ; Brandes, Elke ; Keitel, Claudia ; Boda, Sonja ; Kayler, Zachary E. ; Granier, André ; Barbour, Margaret ; Farquhar, Graham D. ; Treydte, Kerstin</creator><creatorcontrib>Gessler, Arthur ; Brandes, Elke ; Keitel, Claudia ; Boda, Sonja ; Kayler, Zachary E. ; Granier, André ; Barbour, Margaret ; Farquhar, Graham D. ; Treydte, Kerstin</creatorcontrib><description>The oxygen stable isotope composition of plant organic matter (OM) (particularly of wood and cellulose in the tree ring archive) is valuable in studies of plant–climate interaction, but there is a lack of information on the transfer of the isotope signal from the leaf to heterotrophic tissues. We studied the oxygen isotopic composition and its enrichment above source water of leaf water over diel courses in five tree species covering a broad range of life forms. We tracked the transfer of the isotopic signal to leaf water-soluble OM and further to phloem-transported OM. Observed leaf water evaporative enrichment was consistent with values predicted from mechanistic models taking into account nonsteady-state conditions. While leaf water-soluble OM showed the expected 18O enrichment in all species, phloem sugars were less enriched than expected from leaf water enrichment in Scots pine (Pinus sylvestris), European larch (Larix decidua) and Alpine ash (Eucalyptus delegatensis). Oxygen atom exchange with nonenriched water during phloem loading and transport, as well as a significant contribution of assimilates from bark photosynthesis, can explain these phloem 18O enrichment patterns. Our results indicate species-specific uncoupling between the leaf water and the OM oxygen isotope signal, which is important for the interpretation of tree ring data.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.12359</identifier><identifier>PMID: 23763637</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>Archives &amp; records ; Atoms ; Bark ; Biological Transport ; broadleaf ; Carbohydrates - chemistry ; Cellulose ; Cellulose - chemistry ; Chemical composition ; Climate Change ; conifer ; diel course ; Eucalyptus ; Eucalyptus - chemistry ; Eucalyptus - physiology ; Growth rings ; Hardwoods ; Isotope composition ; Isotopes ; Larix - chemistry ; Larix - physiology ; Larix decidua ; Leaves ; Life Sciences ; Organic matter ; Oxygen ; Oxygen - physiology ; oxygen atom exchange ; Oxygen enrichment ; Oxygen isotopes ; Oxygen Isotopes - chemistry ; Phloem ; Phloem - chemistry ; Phloem - physiology ; phloem transport ; Photosynthesis ; Pine trees ; Pinus sylvestris ; Pinus sylvestris - chemistry ; Pinus sylvestris - physiology ; Plant cells ; Plant Leaves - chemistry ; Plant Leaves - physiology ; Plant species ; Plants ; Signal Transduction ; Species ; Stable isotopes ; Sugar ; Sugars ; Tree rings ; Trees - chemistry ; Trees - physiology ; Water ; Water - chemistry ; Water - physiology ; Wood - chemistry ; Wood - physiology ; Xylem</subject><ispartof>The New phytologist, 2013-10, Vol.200 (1), p.144-157</ispartof><rights>2013 New Phytologist Trust</rights><rights>2013 The Authors. New Phytologist © 2013 New Phytologist Trust</rights><rights>2013 The Authors. New Phytologist © 2013 New Phytologist Trust.</rights><rights>Copyright © 2013 New Phytologist Trust</rights><rights>2013. This article is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2013 The Authors New Phytologist © 2013 New Phytologist Trust 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5769-fd97f5417bc9706962d39e8eca3ab6e937562f28edb908ed1f6ea41ecabb56503</citedby><cites>FETCH-LOGICAL-c5769-fd97f5417bc9706962d39e8eca3ab6e937562f28edb908ed1f6ea41ecabb56503</cites><orcidid>0000-0002-1910-9589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.200.1.144$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.200.1.144$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,781,785,804,886,1418,1434,27929,27930,45579,45580,46414,46838,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23763637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01268093$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gessler, Arthur</creatorcontrib><creatorcontrib>Brandes, Elke</creatorcontrib><creatorcontrib>Keitel, Claudia</creatorcontrib><creatorcontrib>Boda, Sonja</creatorcontrib><creatorcontrib>Kayler, Zachary E.</creatorcontrib><creatorcontrib>Granier, André</creatorcontrib><creatorcontrib>Barbour, Margaret</creatorcontrib><creatorcontrib>Farquhar, Graham D.</creatorcontrib><creatorcontrib>Treydte, Kerstin</creatorcontrib><title>The oxygen isotope enrichment of leaf-exported assimilates – does it always reflect lamina leaf water enrichment?</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>The oxygen stable isotope composition of plant organic matter (OM) (particularly of wood and cellulose in the tree ring archive) is valuable in studies of plant–climate interaction, but there is a lack of information on the transfer of the isotope signal from the leaf to heterotrophic tissues. We studied the oxygen isotopic composition and its enrichment above source water of leaf water over diel courses in five tree species covering a broad range of life forms. We tracked the transfer of the isotopic signal to leaf water-soluble OM and further to phloem-transported OM. Observed leaf water evaporative enrichment was consistent with values predicted from mechanistic models taking into account nonsteady-state conditions. While leaf water-soluble OM showed the expected 18O enrichment in all species, phloem sugars were less enriched than expected from leaf water enrichment in Scots pine (Pinus sylvestris), European larch (Larix decidua) and Alpine ash (Eucalyptus delegatensis). Oxygen atom exchange with nonenriched water during phloem loading and transport, as well as a significant contribution of assimilates from bark photosynthesis, can explain these phloem 18O enrichment patterns. Our results indicate species-specific uncoupling between the leaf water and the OM oxygen isotope signal, which is important for the interpretation of tree ring data.</description><subject>Archives &amp; records</subject><subject>Atoms</subject><subject>Bark</subject><subject>Biological Transport</subject><subject>broadleaf</subject><subject>Carbohydrates - chemistry</subject><subject>Cellulose</subject><subject>Cellulose - chemistry</subject><subject>Chemical composition</subject><subject>Climate Change</subject><subject>conifer</subject><subject>diel course</subject><subject>Eucalyptus</subject><subject>Eucalyptus - chemistry</subject><subject>Eucalyptus - physiology</subject><subject>Growth rings</subject><subject>Hardwoods</subject><subject>Isotope composition</subject><subject>Isotopes</subject><subject>Larix - chemistry</subject><subject>Larix - physiology</subject><subject>Larix decidua</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Organic matter</subject><subject>Oxygen</subject><subject>Oxygen - physiology</subject><subject>oxygen atom exchange</subject><subject>Oxygen enrichment</subject><subject>Oxygen isotopes</subject><subject>Oxygen Isotopes - chemistry</subject><subject>Phloem</subject><subject>Phloem - chemistry</subject><subject>Phloem - physiology</subject><subject>phloem transport</subject><subject>Photosynthesis</subject><subject>Pine trees</subject><subject>Pinus sylvestris</subject><subject>Pinus sylvestris - chemistry</subject><subject>Pinus sylvestris - physiology</subject><subject>Plant cells</subject><subject>Plant Leaves - chemistry</subject><subject>Plant Leaves - physiology</subject><subject>Plant species</subject><subject>Plants</subject><subject>Signal Transduction</subject><subject>Species</subject><subject>Stable isotopes</subject><subject>Sugar</subject><subject>Sugars</subject><subject>Tree rings</subject><subject>Trees - chemistry</subject><subject>Trees - physiology</subject><subject>Water</subject><subject>Water - chemistry</subject><subject>Water - physiology</subject><subject>Wood - chemistry</subject><subject>Wood - physiology</subject><subject>Xylem</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9ks9u1DAQxi0EokvhwAsgS1zgkNZ_Eju-gKoKWKQVcCgSN8tJJhuvnDjY2W73xjvwhjwJ3m67lErgg23Zv_nmm9Eg9JySE5rW6TB2J5TxQj1AM5oLlZWUy4doRggrM5GLb0foSYwrQogqBHuMjhiXggsuZyhedID91XYJA7bRT34EDEOwddfDMGHfYgemzeBq9GGCBpsYbW-dmSDiXz9-4sani52wcRuzjThA66CesDO9Hcx1LN4kONwRffsUPWqNi_Ds5jxGX9-_uzifZ4vPHz6eny2yupCpiLZRsi1yKqtaSSKUYA1XUEJtuKkEKC5TMS0roakUSTttBZicpv-qKkRB-DF6s9cd11UPTZ1yB-P0GGxvwlZ7Y_XfP4Pt9NJfaq4IU6VMAq_3At29sPnZQu_eCGWiJIpf0sS-ukkW_Pc1xEn3NtbgnBnAr6OmyayQnMsyoS_voSu_DkNqhWYF5bykRMr_UTRncgdx_sdiHXyMqf0Hn5To3XDoNBz6ejgS--JuPw7k7TQk4HQPbKyD7b-V9Kcv81vJbB-xipMPh4gBNmO3nbzzS5uMM5IUkuuc_wZaoNXV</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Gessler, Arthur</creator><creator>Brandes, Elke</creator><creator>Keitel, Claudia</creator><creator>Boda, Sonja</creator><creator>Kayler, Zachary E.</creator><creator>Granier, André</creator><creator>Barbour, Margaret</creator><creator>Farquhar, Graham D.</creator><creator>Treydte, Kerstin</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QH</scope><scope>7UA</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1910-9589</orcidid></search><sort><creationdate>201310</creationdate><title>The oxygen isotope enrichment of leaf-exported assimilates – does it always reflect lamina leaf water enrichment?</title><author>Gessler, Arthur ; Brandes, Elke ; Keitel, Claudia ; Boda, Sonja ; Kayler, Zachary E. ; Granier, André ; Barbour, Margaret ; Farquhar, Graham D. ; Treydte, Kerstin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5769-fd97f5417bc9706962d39e8eca3ab6e937562f28edb908ed1f6ea41ecabb56503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Archives &amp; records</topic><topic>Atoms</topic><topic>Bark</topic><topic>Biological Transport</topic><topic>broadleaf</topic><topic>Carbohydrates - chemistry</topic><topic>Cellulose</topic><topic>Cellulose - chemistry</topic><topic>Chemical composition</topic><topic>Climate Change</topic><topic>conifer</topic><topic>diel course</topic><topic>Eucalyptus</topic><topic>Eucalyptus - chemistry</topic><topic>Eucalyptus - physiology</topic><topic>Growth rings</topic><topic>Hardwoods</topic><topic>Isotope composition</topic><topic>Isotopes</topic><topic>Larix - chemistry</topic><topic>Larix - physiology</topic><topic>Larix decidua</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Organic matter</topic><topic>Oxygen</topic><topic>Oxygen - physiology</topic><topic>oxygen atom exchange</topic><topic>Oxygen enrichment</topic><topic>Oxygen isotopes</topic><topic>Oxygen Isotopes - chemistry</topic><topic>Phloem</topic><topic>Phloem - chemistry</topic><topic>Phloem - physiology</topic><topic>phloem transport</topic><topic>Photosynthesis</topic><topic>Pine trees</topic><topic>Pinus sylvestris</topic><topic>Pinus sylvestris - chemistry</topic><topic>Pinus sylvestris - physiology</topic><topic>Plant cells</topic><topic>Plant Leaves - chemistry</topic><topic>Plant Leaves - physiology</topic><topic>Plant species</topic><topic>Plants</topic><topic>Signal Transduction</topic><topic>Species</topic><topic>Stable isotopes</topic><topic>Sugar</topic><topic>Sugars</topic><topic>Tree rings</topic><topic>Trees - chemistry</topic><topic>Trees - physiology</topic><topic>Water</topic><topic>Water - chemistry</topic><topic>Water - physiology</topic><topic>Wood - chemistry</topic><topic>Wood - physiology</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gessler, Arthur</creatorcontrib><creatorcontrib>Brandes, Elke</creatorcontrib><creatorcontrib>Keitel, Claudia</creatorcontrib><creatorcontrib>Boda, Sonja</creatorcontrib><creatorcontrib>Kayler, Zachary E.</creatorcontrib><creatorcontrib>Granier, André</creatorcontrib><creatorcontrib>Barbour, Margaret</creatorcontrib><creatorcontrib>Farquhar, Graham D.</creatorcontrib><creatorcontrib>Treydte, Kerstin</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gessler, Arthur</au><au>Brandes, Elke</au><au>Keitel, Claudia</au><au>Boda, Sonja</au><au>Kayler, Zachary E.</au><au>Granier, André</au><au>Barbour, Margaret</au><au>Farquhar, Graham D.</au><au>Treydte, Kerstin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The oxygen isotope enrichment of leaf-exported assimilates – does it always reflect lamina leaf water enrichment?</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2013-10</date><risdate>2013</risdate><volume>200</volume><issue>1</issue><spage>144</spage><epage>157</epage><pages>144-157</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>The oxygen stable isotope composition of plant organic matter (OM) (particularly of wood and cellulose in the tree ring archive) is valuable in studies of plant–climate interaction, but there is a lack of information on the transfer of the isotope signal from the leaf to heterotrophic tissues. We studied the oxygen isotopic composition and its enrichment above source water of leaf water over diel courses in five tree species covering a broad range of life forms. We tracked the transfer of the isotopic signal to leaf water-soluble OM and further to phloem-transported OM. Observed leaf water evaporative enrichment was consistent with values predicted from mechanistic models taking into account nonsteady-state conditions. While leaf water-soluble OM showed the expected 18O enrichment in all species, phloem sugars were less enriched than expected from leaf water enrichment in Scots pine (Pinus sylvestris), European larch (Larix decidua) and Alpine ash (Eucalyptus delegatensis). Oxygen atom exchange with nonenriched water during phloem loading and transport, as well as a significant contribution of assimilates from bark photosynthesis, can explain these phloem 18O enrichment patterns. Our results indicate species-specific uncoupling between the leaf water and the OM oxygen isotope signal, which is important for the interpretation of tree ring data.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>23763637</pmid><doi>10.1111/nph.12359</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1910-9589</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2013-10, Vol.200 (1), p.144-157
issn 0028-646X
1469-8137
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3902987
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; IngentaConnect Free/Open Access Journals; Wiley Online Library (Open Access Collection)
subjects Archives & records
Atoms
Bark
Biological Transport
broadleaf
Carbohydrates - chemistry
Cellulose
Cellulose - chemistry
Chemical composition
Climate Change
conifer
diel course
Eucalyptus
Eucalyptus - chemistry
Eucalyptus - physiology
Growth rings
Hardwoods
Isotope composition
Isotopes
Larix - chemistry
Larix - physiology
Larix decidua
Leaves
Life Sciences
Organic matter
Oxygen
Oxygen - physiology
oxygen atom exchange
Oxygen enrichment
Oxygen isotopes
Oxygen Isotopes - chemistry
Phloem
Phloem - chemistry
Phloem - physiology
phloem transport
Photosynthesis
Pine trees
Pinus sylvestris
Pinus sylvestris - chemistry
Pinus sylvestris - physiology
Plant cells
Plant Leaves - chemistry
Plant Leaves - physiology
Plant species
Plants
Signal Transduction
Species
Stable isotopes
Sugar
Sugars
Tree rings
Trees - chemistry
Trees - physiology
Water
Water - chemistry
Water - physiology
Wood - chemistry
Wood - physiology
Xylem
title The oxygen isotope enrichment of leaf-exported assimilates – does it always reflect lamina leaf water enrichment?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T13%3A25%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20oxygen%20isotope%20enrichment%20of%20leaf-exported%20assimilates%20%E2%80%93%20does%20it%20always%20reflect%20lamina%20leaf%20water%20enrichment?&rft.jtitle=The%20New%20phytologist&rft.au=Gessler,%20Arthur&rft.date=2013-10&rft.volume=200&rft.issue=1&rft.spage=144&rft.epage=157&rft.pages=144-157&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.12359&rft_dat=%3Cjstor_pubme%3Enewphytologist.200.1.144%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1427810733&rft_id=info:pmid/23763637&rft_jstor_id=newphytologist.200.1.144&rfr_iscdi=true