Solid phase synthesis and binding affinity of peptidyl transferase transition state mimics containing 2′‐OH at P‐site position A76

All living cells are dependent on ribosomes to catalyze the peptidyl transfer reaction, by which amino acids are assembled into proteins. The previously studied peptidyl transferase transition state analog CC‐dA‐phosphate‐puromycin (CCdApPmn) has important differences from the transition state, yet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2004, Vol.32 (4), p.1502-1511
Hauptverfasser: Weinger, Joshua S., Kitchen, David, Scaringe, Stephen A., Strobel, Scott A., Muth, Gregory W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1511
container_issue 4
container_start_page 1502
container_title Nucleic acids research
container_volume 32
creator Weinger, Joshua S.
Kitchen, David
Scaringe, Stephen A.
Strobel, Scott A.
Muth, Gregory W.
description All living cells are dependent on ribosomes to catalyze the peptidyl transfer reaction, by which amino acids are assembled into proteins. The previously studied peptidyl transferase transition state analog CC‐dA‐phosphate‐puromycin (CCdApPmn) has important differences from the transition state, yet current models of the ribosomal active site have been heavily influenced by the properties of this molecule. One significant difference is the substitution of deoxyadenosine for riboadenosine at A76, which mimics the 3′ end of a P‐site tRNA. We have developed a solid phase synthetic approach to produce inhibitors that more closely match the transition state, including the critical P‐site 2′‐OH. Inclusion of the 2′‐OH or an even bulkier OCH3 group causes significant changes in binding affinity. We also investigated the effects of changing the A‐site amino acid side chain from phenylalanine to alanine. These results indicate that the absence of the 2′‐OH is likely to play a significant role in the binding and conformation of CCdApPmn in the ribosomal active site by eliminating steric clash between the 2′‐OH and the tetrahedral phosphate oxygen. The conformation of the actual transition state must allow for the presence of the 2′‐OH, and transition state mimics that include this critical hydroxyl group must bind in a different conformation from that seen in prior analog structures. These new inhibitors will provide valuable insights into the geometry and mechanism of the ribosomal active site.
doi_str_mv 10.1093/nar/gkh311
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_390298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71698579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-aaf9f055d0653fd966717d14a4acaa472900e64a8eb5054187250aba03ed7653</originalsourceid><addsrcrecordid>eNqFkr1uFDEQx1cIRI5AwwMgiyIF0pKxvbbXBUV0fBwQKQgigWisuV3vnZM9e1n7ENelpORZeKQ8CQ53Ch9NKo80v9_IM_oXxUMKTylofuhxPFycLzmlt4oJ5ZKVlZbsdjEBDqKkUNV7xb0YzwBoRUV1t9ijldYaNJsU3z-E3rVkWGK0JG58WtroIkHfkrnzrfMLgl3nvEsbEjoy2CG5dtOTNKKPnR2vtN-1Sy54EhMmS1Zu5ZpImuATZjXPYJcXPy8vfpzMCCbyLleZt2QIO-1IyfvFnQ77aB_s3v3i9OWL0-msPD559Xp6dFw2AiCViJ3uQIgWpOBdq6VUVLW0wgobxEoxDWBlhbWdCxAVrRUTgHMEbluVlf3i2XbssJ6vbNtYn3_fm2F0Kxw3JqAz_3a8W5pF-Gq4Bqbr7B_s_DF8WduYzMrFxvY9ehvW0SgqdS2UvhGkWipFKbsZVFpxASqDj_8Dz8J69PlYhgFIKRSjGXqyhZoxxDja7no1CuYqLSanxWzTkuFHfx_jD7qLRwbKLeBist-u-zieG6m4Emb26bN5-0Y-f88_MjPlvwAECc_X</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200665721</pqid></control><display><type>article</type><title>Solid phase synthesis and binding affinity of peptidyl transferase transition state mimics containing 2′‐OH at P‐site position A76</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Weinger, Joshua S. ; Kitchen, David ; Scaringe, Stephen A. ; Strobel, Scott A. ; Muth, Gregory W.</creator><creatorcontrib>Weinger, Joshua S. ; Kitchen, David ; Scaringe, Stephen A. ; Strobel, Scott A. ; Muth, Gregory W.</creatorcontrib><description>All living cells are dependent on ribosomes to catalyze the peptidyl transfer reaction, by which amino acids are assembled into proteins. The previously studied peptidyl transferase transition state analog CC‐dA‐phosphate‐puromycin (CCdApPmn) has important differences from the transition state, yet current models of the ribosomal active site have been heavily influenced by the properties of this molecule. One significant difference is the substitution of deoxyadenosine for riboadenosine at A76, which mimics the 3′ end of a P‐site tRNA. We have developed a solid phase synthetic approach to produce inhibitors that more closely match the transition state, including the critical P‐site 2′‐OH. Inclusion of the 2′‐OH or an even bulkier OCH3 group causes significant changes in binding affinity. We also investigated the effects of changing the A‐site amino acid side chain from phenylalanine to alanine. These results indicate that the absence of the 2′‐OH is likely to play a significant role in the binding and conformation of CCdApPmn in the ribosomal active site by eliminating steric clash between the 2′‐OH and the tetrahedral phosphate oxygen. The conformation of the actual transition state must allow for the presence of the 2′‐OH, and transition state mimics that include this critical hydroxyl group must bind in a different conformation from that seen in prior analog structures. These new inhibitors will provide valuable insights into the geometry and mechanism of the ribosomal active site.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkh311</identifier><identifier>PMID: 14999092</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Binding Sites ; Deoxyadenosines - chemistry ; Enzyme Inhibitors - chemical synthesis ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - metabolism ; Peptidyl Transferases - chemistry ; Peptidyl Transferases - metabolism ; Phosphates - chemistry</subject><ispartof>Nucleic acids research, 2004, Vol.32 (4), p.1502-1511</ispartof><rights>Copyright Oxford University Press(England) Feb 15, 2004</rights><rights>Copyright © 2004 Oxford University Press 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-aaf9f055d0653fd966717d14a4acaa472900e64a8eb5054187250aba03ed7653</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC390298/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC390298/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14999092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weinger, Joshua S.</creatorcontrib><creatorcontrib>Kitchen, David</creatorcontrib><creatorcontrib>Scaringe, Stephen A.</creatorcontrib><creatorcontrib>Strobel, Scott A.</creatorcontrib><creatorcontrib>Muth, Gregory W.</creatorcontrib><title>Solid phase synthesis and binding affinity of peptidyl transferase transition state mimics containing 2′‐OH at P‐site position A76</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>All living cells are dependent on ribosomes to catalyze the peptidyl transfer reaction, by which amino acids are assembled into proteins. The previously studied peptidyl transferase transition state analog CC‐dA‐phosphate‐puromycin (CCdApPmn) has important differences from the transition state, yet current models of the ribosomal active site have been heavily influenced by the properties of this molecule. One significant difference is the substitution of deoxyadenosine for riboadenosine at A76, which mimics the 3′ end of a P‐site tRNA. We have developed a solid phase synthetic approach to produce inhibitors that more closely match the transition state, including the critical P‐site 2′‐OH. Inclusion of the 2′‐OH or an even bulkier OCH3 group causes significant changes in binding affinity. We also investigated the effects of changing the A‐site amino acid side chain from phenylalanine to alanine. These results indicate that the absence of the 2′‐OH is likely to play a significant role in the binding and conformation of CCdApPmn in the ribosomal active site by eliminating steric clash between the 2′‐OH and the tetrahedral phosphate oxygen. The conformation of the actual transition state must allow for the presence of the 2′‐OH, and transition state mimics that include this critical hydroxyl group must bind in a different conformation from that seen in prior analog structures. These new inhibitors will provide valuable insights into the geometry and mechanism of the ribosomal active site.</description><subject>Binding Sites</subject><subject>Deoxyadenosines - chemistry</subject><subject>Enzyme Inhibitors - chemical synthesis</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - metabolism</subject><subject>Peptidyl Transferases - chemistry</subject><subject>Peptidyl Transferases - metabolism</subject><subject>Phosphates - chemistry</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkr1uFDEQx1cIRI5AwwMgiyIF0pKxvbbXBUV0fBwQKQgigWisuV3vnZM9e1n7ENelpORZeKQ8CQ53Ch9NKo80v9_IM_oXxUMKTylofuhxPFycLzmlt4oJ5ZKVlZbsdjEBDqKkUNV7xb0YzwBoRUV1t9ijldYaNJsU3z-E3rVkWGK0JG58WtroIkHfkrnzrfMLgl3nvEsbEjoy2CG5dtOTNKKPnR2vtN-1Sy54EhMmS1Zu5ZpImuATZjXPYJcXPy8vfpzMCCbyLleZt2QIO-1IyfvFnQ77aB_s3v3i9OWL0-msPD559Xp6dFw2AiCViJ3uQIgWpOBdq6VUVLW0wgobxEoxDWBlhbWdCxAVrRUTgHMEbluVlf3i2XbssJ6vbNtYn3_fm2F0Kxw3JqAz_3a8W5pF-Gq4Bqbr7B_s_DF8WduYzMrFxvY9ehvW0SgqdS2UvhGkWipFKbsZVFpxASqDj_8Dz8J69PlYhgFIKRSjGXqyhZoxxDja7no1CuYqLSanxWzTkuFHfx_jD7qLRwbKLeBist-u-zieG6m4Emb26bN5-0Y-f88_MjPlvwAECc_X</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Weinger, Joshua S.</creator><creator>Kitchen, David</creator><creator>Scaringe, Stephen A.</creator><creator>Strobel, Scott A.</creator><creator>Muth, Gregory W.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2004</creationdate><title>Solid phase synthesis and binding affinity of peptidyl transferase transition state mimics containing 2′‐OH at P‐site position A76</title><author>Weinger, Joshua S. ; Kitchen, David ; Scaringe, Stephen A. ; Strobel, Scott A. ; Muth, Gregory W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-aaf9f055d0653fd966717d14a4acaa472900e64a8eb5054187250aba03ed7653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Binding Sites</topic><topic>Deoxyadenosines - chemistry</topic><topic>Enzyme Inhibitors - chemical synthesis</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - metabolism</topic><topic>Peptidyl Transferases - chemistry</topic><topic>Peptidyl Transferases - metabolism</topic><topic>Phosphates - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weinger, Joshua S.</creatorcontrib><creatorcontrib>Kitchen, David</creatorcontrib><creatorcontrib>Scaringe, Stephen A.</creatorcontrib><creatorcontrib>Strobel, Scott A.</creatorcontrib><creatorcontrib>Muth, Gregory W.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weinger, Joshua S.</au><au>Kitchen, David</au><au>Scaringe, Stephen A.</au><au>Strobel, Scott A.</au><au>Muth, Gregory W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid phase synthesis and binding affinity of peptidyl transferase transition state mimics containing 2′‐OH at P‐site position A76</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2004</date><risdate>2004</risdate><volume>32</volume><issue>4</issue><spage>1502</spage><epage>1511</epage><pages>1502-1511</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>All living cells are dependent on ribosomes to catalyze the peptidyl transfer reaction, by which amino acids are assembled into proteins. The previously studied peptidyl transferase transition state analog CC‐dA‐phosphate‐puromycin (CCdApPmn) has important differences from the transition state, yet current models of the ribosomal active site have been heavily influenced by the properties of this molecule. One significant difference is the substitution of deoxyadenosine for riboadenosine at A76, which mimics the 3′ end of a P‐site tRNA. We have developed a solid phase synthetic approach to produce inhibitors that more closely match the transition state, including the critical P‐site 2′‐OH. Inclusion of the 2′‐OH or an even bulkier OCH3 group causes significant changes in binding affinity. We also investigated the effects of changing the A‐site amino acid side chain from phenylalanine to alanine. These results indicate that the absence of the 2′‐OH is likely to play a significant role in the binding and conformation of CCdApPmn in the ribosomal active site by eliminating steric clash between the 2′‐OH and the tetrahedral phosphate oxygen. The conformation of the actual transition state must allow for the presence of the 2′‐OH, and transition state mimics that include this critical hydroxyl group must bind in a different conformation from that seen in prior analog structures. These new inhibitors will provide valuable insights into the geometry and mechanism of the ribosomal active site.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>14999092</pmid><doi>10.1093/nar/gkh311</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2004, Vol.32 (4), p.1502-1511
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_390298
source MEDLINE; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Binding Sites
Deoxyadenosines - chemistry
Enzyme Inhibitors - chemical synthesis
Enzyme Inhibitors - chemistry
Enzyme Inhibitors - metabolism
Peptidyl Transferases - chemistry
Peptidyl Transferases - metabolism
Phosphates - chemistry
title Solid phase synthesis and binding affinity of peptidyl transferase transition state mimics containing 2′‐OH at P‐site position A76
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A59%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid%20phase%20synthesis%20and%20binding%20affinity%20of%20peptidyl%20transferase%20transition%20state%20mimics%20containing%202%E2%80%B2%E2%80%90OH%20at%20P%E2%80%90site%20position%20A76&rft.jtitle=Nucleic%20acids%20research&rft.au=Weinger,%20Joshua%20S.&rft.date=2004&rft.volume=32&rft.issue=4&rft.spage=1502&rft.epage=1511&rft.pages=1502-1511&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkh311&rft_dat=%3Cproquest_pubme%3E71698579%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200665721&rft_id=info:pmid/14999092&rfr_iscdi=true