Differential expression of microRNAs as predictors of glioblastoma phenotypes

Glioblastoma is the most aggressive primary central nervous tumor and carries a very poor prognosis. Invasion precludes effective treatment and virtually assures tumor recurrence. In the current study, we applied analytical and bioinformatics approaches to identify a set of microRNAs (miRs) from sev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics 2014-01, Vol.15 (1), p.21-21, Article 21
Hauptverfasser: Bradley, Barrie S, Loftus, Joseph C, Mielke, Clinton J, Dinu, Valentin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 1
container_start_page 21
container_title BMC bioinformatics
container_volume 15
creator Bradley, Barrie S
Loftus, Joseph C
Mielke, Clinton J
Dinu, Valentin
description Glioblastoma is the most aggressive primary central nervous tumor and carries a very poor prognosis. Invasion precludes effective treatment and virtually assures tumor recurrence. In the current study, we applied analytical and bioinformatics approaches to identify a set of microRNAs (miRs) from several different human glioblastoma cell lines that exhibit significant differential expression between migratory (edge) and migration-restricted (core) cell populations. The hypothesis of the study is that differential expression of miRs provides an epigenetic mechanism to drive cell migration and invasion. Our research data comprise gene expression values for a set of 805 human miRs collected from matched pairs of migratory and migration-restricted cell populations from seven different glioblastoma cell lines. We identified 62 down-regulated and 2 up-regulated miRs that exhibit significant differential expression in the migratory (edge) cell population compared to matched migration-restricted (core) cells. We then conducted target prediction and pathway enrichment analysis with these miRs to investigate potential associated gene and pathway targets. Several miRs in the list appear to directly target apoptosis related genes. The analysis identifies a set of genes that are predicted by 3 different algorithms, further emphasizing the potential validity of these miRs to promote glioblastoma. The results of this study identify a set of miRs with potential for decreased expression in invasive glioblastoma cells. The verification of these miRs and their associated targeted proteins provides new insights for further investigation into therapeutic interventions. The methodological approaches employed here could be applied to the study of other diseases to provide biomedical researchers and clinicians with increased opportunities for therapeutic interventions.
doi_str_mv 10.1186/1471-2105-15-21
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3901345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A539461121</galeid><sourcerecordid>A539461121</sourcerecordid><originalsourceid>FETCH-LOGICAL-b614t-16e20a611ef23faec9d971e51f6440b601c975ab30878d1f16b4f7c07c26cbbb3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiNERT_gzA1F4gKHtJ7EjpML0lKgVCogFThbtjPeukriYCeo_fd1umXboCLkw1gzz7wavTNJ8hLIIUBVHgHlkOVAWAYsxifJ3jbz9MF_N9kP4ZIQ4BVhz5LdnNKiAg57yZcP1hj02I9WtileDR5DsK5PnUk7q707_7oKqQxpLDRWj86HubRurVOtDKPrZDpcYO_G6wHD82THyDbgi7t4kPz89PHH8efs7NvJ6fHqLFMl0DGDEnMiSwA0eWEk6rqpOSADU1JKVElA15xJVZCKVw0YKBU1XBOu81IrpYqD5N1Gd5hUh42O43vZisHbTvpr4aQVy0pvL8Ta_RZFTaCgLAq83wgo6_4hsKxo14nZTjHbKYDFGEXe3E3h3a8Jwyg6GzS2rezRTSFShPCKzmb_F6V1XtYVY3lEX_-FXrrJ99HOmQIGhFO4p9ayRWF74-KYehYVK1bUNJp7O-HhI1R8Dcbluh6NjflFw9tFQ2RGvBrXcgpBnH4_X7JHGzZeSQgezdY-IGK-zkcMe_VwbVv-zzkWN4Nf3Z8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1491510741</pqid></control><display><type>article</type><title>Differential expression of microRNAs as predictors of glioblastoma phenotypes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Bradley, Barrie S ; Loftus, Joseph C ; Mielke, Clinton J ; Dinu, Valentin</creator><creatorcontrib>Bradley, Barrie S ; Loftus, Joseph C ; Mielke, Clinton J ; Dinu, Valentin</creatorcontrib><description>Glioblastoma is the most aggressive primary central nervous tumor and carries a very poor prognosis. Invasion precludes effective treatment and virtually assures tumor recurrence. In the current study, we applied analytical and bioinformatics approaches to identify a set of microRNAs (miRs) from several different human glioblastoma cell lines that exhibit significant differential expression between migratory (edge) and migration-restricted (core) cell populations. The hypothesis of the study is that differential expression of miRs provides an epigenetic mechanism to drive cell migration and invasion. Our research data comprise gene expression values for a set of 805 human miRs collected from matched pairs of migratory and migration-restricted cell populations from seven different glioblastoma cell lines. We identified 62 down-regulated and 2 up-regulated miRs that exhibit significant differential expression in the migratory (edge) cell population compared to matched migration-restricted (core) cells. We then conducted target prediction and pathway enrichment analysis with these miRs to investigate potential associated gene and pathway targets. Several miRs in the list appear to directly target apoptosis related genes. The analysis identifies a set of genes that are predicted by 3 different algorithms, further emphasizing the potential validity of these miRs to promote glioblastoma. The results of this study identify a set of miRs with potential for decreased expression in invasive glioblastoma cells. The verification of these miRs and their associated targeted proteins provides new insights for further investigation into therapeutic interventions. The methodological approaches employed here could be applied to the study of other diseases to provide biomedical researchers and clinicians with increased opportunities for therapeutic interventions.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/1471-2105-15-21</identifier><identifier>PMID: 24438171</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Algorithms ; Analysis ; Apoptosis - genetics ; Bioinformatics ; Cell Line, Tumor ; Cell Movement - genetics ; Computational Biology - methods ; Data processing ; Epigenetic inheritance ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic - genetics ; Genetic aspects ; Glioblastoma - genetics ; Glioblastoma - metabolism ; Humans ; Medical prognosis ; Medical research ; Medicine, Experimental ; MicroRNA ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Migration ; Neoplasm Invasiveness - genetics ; Phenotype ; Physiological aspects ; Studies ; Tumors ; Volcanoes</subject><ispartof>BMC bioinformatics, 2014-01, Vol.15 (1), p.21-21, Article 21</ispartof><rights>COPYRIGHT 2014 BioMed Central Ltd.</rights><rights>2014 Bradley et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2014 Bradley et al.; licensee BioMed Central Ltd. 2014 Bradley et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b614t-16e20a611ef23faec9d971e51f6440b601c975ab30878d1f16b4f7c07c26cbbb3</citedby><cites>FETCH-LOGICAL-b614t-16e20a611ef23faec9d971e51f6440b601c975ab30878d1f16b4f7c07c26cbbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901345/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901345/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24438171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bradley, Barrie S</creatorcontrib><creatorcontrib>Loftus, Joseph C</creatorcontrib><creatorcontrib>Mielke, Clinton J</creatorcontrib><creatorcontrib>Dinu, Valentin</creatorcontrib><title>Differential expression of microRNAs as predictors of glioblastoma phenotypes</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Glioblastoma is the most aggressive primary central nervous tumor and carries a very poor prognosis. Invasion precludes effective treatment and virtually assures tumor recurrence. In the current study, we applied analytical and bioinformatics approaches to identify a set of microRNAs (miRs) from several different human glioblastoma cell lines that exhibit significant differential expression between migratory (edge) and migration-restricted (core) cell populations. The hypothesis of the study is that differential expression of miRs provides an epigenetic mechanism to drive cell migration and invasion. Our research data comprise gene expression values for a set of 805 human miRs collected from matched pairs of migratory and migration-restricted cell populations from seven different glioblastoma cell lines. We identified 62 down-regulated and 2 up-regulated miRs that exhibit significant differential expression in the migratory (edge) cell population compared to matched migration-restricted (core) cells. We then conducted target prediction and pathway enrichment analysis with these miRs to investigate potential associated gene and pathway targets. Several miRs in the list appear to directly target apoptosis related genes. The analysis identifies a set of genes that are predicted by 3 different algorithms, further emphasizing the potential validity of these miRs to promote glioblastoma. The results of this study identify a set of miRs with potential for decreased expression in invasive glioblastoma cells. The verification of these miRs and their associated targeted proteins provides new insights for further investigation into therapeutic interventions. The methodological approaches employed here could be applied to the study of other diseases to provide biomedical researchers and clinicians with increased opportunities for therapeutic interventions.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Apoptosis - genetics</subject><subject>Bioinformatics</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement - genetics</subject><subject>Computational Biology - methods</subject><subject>Data processing</subject><subject>Epigenetic inheritance</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic - genetics</subject><subject>Genetic aspects</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - metabolism</subject><subject>Humans</subject><subject>Medical prognosis</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Migration</subject><subject>Neoplasm Invasiveness - genetics</subject><subject>Phenotype</subject><subject>Physiological aspects</subject><subject>Studies</subject><subject>Tumors</subject><subject>Volcanoes</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkk1v1DAQhiNERT_gzA1F4gKHtJ7EjpML0lKgVCogFThbtjPeukriYCeo_fd1umXboCLkw1gzz7wavTNJ8hLIIUBVHgHlkOVAWAYsxifJ3jbz9MF_N9kP4ZIQ4BVhz5LdnNKiAg57yZcP1hj02I9WtileDR5DsK5PnUk7q707_7oKqQxpLDRWj86HubRurVOtDKPrZDpcYO_G6wHD82THyDbgi7t4kPz89PHH8efs7NvJ6fHqLFMl0DGDEnMiSwA0eWEk6rqpOSADU1JKVElA15xJVZCKVw0YKBU1XBOu81IrpYqD5N1Gd5hUh42O43vZisHbTvpr4aQVy0pvL8Ta_RZFTaCgLAq83wgo6_4hsKxo14nZTjHbKYDFGEXe3E3h3a8Jwyg6GzS2rezRTSFShPCKzmb_F6V1XtYVY3lEX_-FXrrJ99HOmQIGhFO4p9ayRWF74-KYehYVK1bUNJp7O-HhI1R8Dcbluh6NjflFw9tFQ2RGvBrXcgpBnH4_X7JHGzZeSQgezdY-IGK-zkcMe_VwbVv-zzkWN4Nf3Z8</recordid><startdate>20140118</startdate><enddate>20140118</enddate><creator>Bradley, Barrie S</creator><creator>Loftus, Joseph C</creator><creator>Mielke, Clinton J</creator><creator>Dinu, Valentin</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140118</creationdate><title>Differential expression of microRNAs as predictors of glioblastoma phenotypes</title><author>Bradley, Barrie S ; Loftus, Joseph C ; Mielke, Clinton J ; Dinu, Valentin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b614t-16e20a611ef23faec9d971e51f6440b601c975ab30878d1f16b4f7c07c26cbbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Apoptosis - genetics</topic><topic>Bioinformatics</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement - genetics</topic><topic>Computational Biology - methods</topic><topic>Data processing</topic><topic>Epigenetic inheritance</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic - genetics</topic><topic>Genetic aspects</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - metabolism</topic><topic>Humans</topic><topic>Medical prognosis</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Migration</topic><topic>Neoplasm Invasiveness - genetics</topic><topic>Phenotype</topic><topic>Physiological aspects</topic><topic>Studies</topic><topic>Tumors</topic><topic>Volcanoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bradley, Barrie S</creatorcontrib><creatorcontrib>Loftus, Joseph C</creatorcontrib><creatorcontrib>Mielke, Clinton J</creatorcontrib><creatorcontrib>Dinu, Valentin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bradley, Barrie S</au><au>Loftus, Joseph C</au><au>Mielke, Clinton J</au><au>Dinu, Valentin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential expression of microRNAs as predictors of glioblastoma phenotypes</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2014-01-18</date><risdate>2014</risdate><volume>15</volume><issue>1</issue><spage>21</spage><epage>21</epage><pages>21-21</pages><artnum>21</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>Glioblastoma is the most aggressive primary central nervous tumor and carries a very poor prognosis. Invasion precludes effective treatment and virtually assures tumor recurrence. In the current study, we applied analytical and bioinformatics approaches to identify a set of microRNAs (miRs) from several different human glioblastoma cell lines that exhibit significant differential expression between migratory (edge) and migration-restricted (core) cell populations. The hypothesis of the study is that differential expression of miRs provides an epigenetic mechanism to drive cell migration and invasion. Our research data comprise gene expression values for a set of 805 human miRs collected from matched pairs of migratory and migration-restricted cell populations from seven different glioblastoma cell lines. We identified 62 down-regulated and 2 up-regulated miRs that exhibit significant differential expression in the migratory (edge) cell population compared to matched migration-restricted (core) cells. We then conducted target prediction and pathway enrichment analysis with these miRs to investigate potential associated gene and pathway targets. Several miRs in the list appear to directly target apoptosis related genes. The analysis identifies a set of genes that are predicted by 3 different algorithms, further emphasizing the potential validity of these miRs to promote glioblastoma. The results of this study identify a set of miRs with potential for decreased expression in invasive glioblastoma cells. The verification of these miRs and their associated targeted proteins provides new insights for further investigation into therapeutic interventions. The methodological approaches employed here could be applied to the study of other diseases to provide biomedical researchers and clinicians with increased opportunities for therapeutic interventions.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>24438171</pmid><doi>10.1186/1471-2105-15-21</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2105
ispartof BMC bioinformatics, 2014-01, Vol.15 (1), p.21-21, Article 21
issn 1471-2105
1471-2105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3901345
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Journals; PubMed Central Open Access; Springer Nature OA Free Journals; PubMed Central; EZB Electronic Journals Library
subjects Algorithms
Analysis
Apoptosis - genetics
Bioinformatics
Cell Line, Tumor
Cell Movement - genetics
Computational Biology - methods
Data processing
Epigenetic inheritance
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Neoplastic - genetics
Genetic aspects
Glioblastoma - genetics
Glioblastoma - metabolism
Humans
Medical prognosis
Medical research
Medicine, Experimental
MicroRNA
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
Migration
Neoplasm Invasiveness - genetics
Phenotype
Physiological aspects
Studies
Tumors
Volcanoes
title Differential expression of microRNAs as predictors of glioblastoma phenotypes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20expression%20of%20microRNAs%20as%20predictors%20of%20glioblastoma%20phenotypes&rft.jtitle=BMC%20bioinformatics&rft.au=Bradley,%20Barrie%20S&rft.date=2014-01-18&rft.volume=15&rft.issue=1&rft.spage=21&rft.epage=21&rft.pages=21-21&rft.artnum=21&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/1471-2105-15-21&rft_dat=%3Cgale_pubme%3EA539461121%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1491510741&rft_id=info:pmid/24438171&rft_galeid=A539461121&rfr_iscdi=true