Comparison and combination of several MeSH indexing approaches
MeSH indexing of MEDLINE is becoming a more difficult task for the group of highly qualified indexing staff at the US National Library of Medicine, due to the large yearly growth of MEDLINE and the increasing size of MeSH. Since 2002, this task has been assisted by the Medical Text Indexer or MTI pr...
Gespeichert in:
Veröffentlicht in: | AMIA ... Annual Symposium proceedings 2013, Vol.2013, p.709-718 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 718 |
---|---|
container_issue | |
container_start_page | 709 |
container_title | AMIA ... Annual Symposium proceedings |
container_volume | 2013 |
creator | Yepes, Antonio Jose Jimeno Mork, James G Demner-Fushman, Dina Aronson, Alan R |
description | MeSH indexing of MEDLINE is becoming a more difficult task for the group of highly qualified indexing staff at the US National Library of Medicine, due to the large yearly growth of MEDLINE and the increasing size of MeSH. Since 2002, this task has been assisted by the Medical Text Indexer or MTI program. We extend previous machine learning analysis by adding a more diverse set of MeSH headings targeting examples where MTI has been shown to perform poorly. Machine learning algorithms exceed MTI's performance on MeSH headings that are used very frequently and headings for which the indexing frequency is very low. We find that when we combine the MTI suggestions and the prediction of the learning algorithms, the performance improves compared to any single method for most of the evaluated MeSH headings. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3900212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1500691352</sourcerecordid><originalsourceid>FETCH-LOGICAL-p181t-e612b1bb8303716554cd6b720165a986a9310ed23758c7dba19b28d51218ce3c3</originalsourceid><addsrcrecordid>eNpVkE1LAzEQhoMgtlb_guzRy0Im2WR3LwUpagsVD-o55GPaRnaTdbMt-u9dsYqeZoYZnudlTsgUhKjzgpZyQs5TeqW0KEUlz8iEFUIAL2FK5ovYdrr3KYZMB5fZ2Bof9ODHOW6yhAfsdZM94NMy88Hhuw_bTHddH7XdYbogpxvdJLw81hl5ubt9Xizz9eP9anGzzjuoYMhRAjNgTMXpaJVCFNZJUzI69rqupK45UHSMj_ls6YyG2rDKCWBQWeSWz8j8m9vtTYvOYhjGWKrrfav7DxW1V_83we_UNh4UryllwEbA9RHQx7c9pkG1PllsGh0w7pMCQamsgYuv06u_rl_Jz9P4J2kYZ54</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1500691352</pqid></control><display><type>article</type><title>Comparison and combination of several MeSH indexing approaches</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Yepes, Antonio Jose Jimeno ; Mork, James G ; Demner-Fushman, Dina ; Aronson, Alan R</creator><creatorcontrib>Yepes, Antonio Jose Jimeno ; Mork, James G ; Demner-Fushman, Dina ; Aronson, Alan R</creatorcontrib><description>MeSH indexing of MEDLINE is becoming a more difficult task for the group of highly qualified indexing staff at the US National Library of Medicine, due to the large yearly growth of MEDLINE and the increasing size of MeSH. Since 2002, this task has been assisted by the Medical Text Indexer or MTI program. We extend previous machine learning analysis by adding a more diverse set of MeSH headings targeting examples where MTI has been shown to perform poorly. Machine learning algorithms exceed MTI's performance on MeSH headings that are used very frequently and headings for which the indexing frequency is very low. We find that when we combine the MTI suggestions and the prediction of the learning algorithms, the performance improves compared to any single method for most of the evaluated MeSH headings.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 24551371</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Abstracting and Indexing as Topic - methods ; Algorithms ; Artificial Intelligence ; Medical Subject Headings ; MEDLINE ; Natural Language Processing</subject><ispartof>AMIA ... Annual Symposium proceedings, 2013, Vol.2013, p.709-718</ispartof><rights>2013 AMIA - All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900212/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900212/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24551371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yepes, Antonio Jose Jimeno</creatorcontrib><creatorcontrib>Mork, James G</creatorcontrib><creatorcontrib>Demner-Fushman, Dina</creatorcontrib><creatorcontrib>Aronson, Alan R</creatorcontrib><title>Comparison and combination of several MeSH indexing approaches</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>MeSH indexing of MEDLINE is becoming a more difficult task for the group of highly qualified indexing staff at the US National Library of Medicine, due to the large yearly growth of MEDLINE and the increasing size of MeSH. Since 2002, this task has been assisted by the Medical Text Indexer or MTI program. We extend previous machine learning analysis by adding a more diverse set of MeSH headings targeting examples where MTI has been shown to perform poorly. Machine learning algorithms exceed MTI's performance on MeSH headings that are used very frequently and headings for which the indexing frequency is very low. We find that when we combine the MTI suggestions and the prediction of the learning algorithms, the performance improves compared to any single method for most of the evaluated MeSH headings.</description><subject>Abstracting and Indexing as Topic - methods</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Medical Subject Headings</subject><subject>MEDLINE</subject><subject>Natural Language Processing</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1LAzEQhoMgtlb_guzRy0Im2WR3LwUpagsVD-o55GPaRnaTdbMt-u9dsYqeZoYZnudlTsgUhKjzgpZyQs5TeqW0KEUlz8iEFUIAL2FK5ovYdrr3KYZMB5fZ2Bof9ODHOW6yhAfsdZM94NMy88Hhuw_bTHddH7XdYbogpxvdJLw81hl5ubt9Xizz9eP9anGzzjuoYMhRAjNgTMXpaJVCFNZJUzI69rqupK45UHSMj_ls6YyG2rDKCWBQWeSWz8j8m9vtTYvOYhjGWKrrfav7DxW1V_83we_UNh4UryllwEbA9RHQx7c9pkG1PllsGh0w7pMCQamsgYuv06u_rl_Jz9P4J2kYZ54</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Yepes, Antonio Jose Jimeno</creator><creator>Mork, James G</creator><creator>Demner-Fushman, Dina</creator><creator>Aronson, Alan R</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2013</creationdate><title>Comparison and combination of several MeSH indexing approaches</title><author>Yepes, Antonio Jose Jimeno ; Mork, James G ; Demner-Fushman, Dina ; Aronson, Alan R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p181t-e612b1bb8303716554cd6b720165a986a9310ed23758c7dba19b28d51218ce3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Abstracting and Indexing as Topic - methods</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Medical Subject Headings</topic><topic>MEDLINE</topic><topic>Natural Language Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yepes, Antonio Jose Jimeno</creatorcontrib><creatorcontrib>Mork, James G</creatorcontrib><creatorcontrib>Demner-Fushman, Dina</creatorcontrib><creatorcontrib>Aronson, Alan R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yepes, Antonio Jose Jimeno</au><au>Mork, James G</au><au>Demner-Fushman, Dina</au><au>Aronson, Alan R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison and combination of several MeSH indexing approaches</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2013</date><risdate>2013</risdate><volume>2013</volume><spage>709</spage><epage>718</epage><pages>709-718</pages><eissn>1559-4076</eissn><abstract>MeSH indexing of MEDLINE is becoming a more difficult task for the group of highly qualified indexing staff at the US National Library of Medicine, due to the large yearly growth of MEDLINE and the increasing size of MeSH. Since 2002, this task has been assisted by the Medical Text Indexer or MTI program. We extend previous machine learning analysis by adding a more diverse set of MeSH headings targeting examples where MTI has been shown to perform poorly. Machine learning algorithms exceed MTI's performance on MeSH headings that are used very frequently and headings for which the indexing frequency is very low. We find that when we combine the MTI suggestions and the prediction of the learning algorithms, the performance improves compared to any single method for most of the evaluated MeSH headings.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>24551371</pmid><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1559-4076 |
ispartof | AMIA ... Annual Symposium proceedings, 2013, Vol.2013, p.709-718 |
issn | 1559-4076 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3900212 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Abstracting and Indexing as Topic - methods Algorithms Artificial Intelligence Medical Subject Headings MEDLINE Natural Language Processing |
title | Comparison and combination of several MeSH indexing approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20and%20combination%20of%20several%20MeSH%20indexing%20approaches&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Yepes,%20Antonio%20Jose%20Jimeno&rft.date=2013&rft.volume=2013&rft.spage=709&rft.epage=718&rft.pages=709-718&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E1500691352%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1500691352&rft_id=info:pmid/24551371&rfr_iscdi=true |