Spin memristive magnetic tunnel junctions with CoO-ZnO nano composite barrier
The spin memristive devices combining memristance and tunneling magnetoresistance have promising applications in multibit nonvolatile data storage and artificial neuronal computing. However, it is a great challenge for simultaneous realization of large memristance and magnetoresistance in one nanosc...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2014-01, Vol.4 (1), p.3835-3835, Article 3835 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3835 |
---|---|
container_issue | 1 |
container_start_page | 3835 |
container_title | Scientific reports |
container_volume | 4 |
creator | Li, Qiang Shen, Ting-Ting Cao, Yan-Ling Zhang, Kun Yan, Shi-Shen Tian, Yu-Feng Kang, Shi-Shou Zhao, Ming-Wen Dai, You-Yong Chen, Yan-Xue Liu, Guo-Lei Mei, Liang-Mo Wang, Xiao-Lin Grünberg, Peter |
description | The spin memristive devices combining memristance and tunneling magnetoresistance have promising applications in multibit nonvolatile data storage and artificial neuronal computing. However, it is a great challenge for simultaneous realization of large memristance and magnetoresistance in one nanoscale junction, because it is very hard to find a proper spacer layer which not only serves as good insulating layer for tunneling magnetoresistance but also easily switches between high and low resistance states under electrical field. Here we firstly propose to use nanon composite barrier layers of CoO-ZnO to fabricate the spin memristive Co/CoO-ZnO/Co magnetic tunnel junctions. The bipolar resistance switching ratio is high up to 90 and the TMR ratio of the high resistance state gets to 8% at room temperature, which leads to three resistance states. The bipolar resistance switching is explained by the metal-insulator transition of CoO
1−v
layer due to the migration of oxygen ions between CoO
1−v
and ZnO
1−v
. |
doi_str_mv | 10.1038/srep03835 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3899592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897793254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-55fca96110a83ad2ec088a318aea298204cc90e48acc8d58fb5631456d96acdc3</originalsourceid><addsrcrecordid>eNplkU-rEzEUxYMottQu_AIScKMPRvN3XrIRpPh8QqULdeMmpJnbvpSZZEwy7-G3N9Jaqt7NvXB_nHsuB6HnlLyhhKu3OcFYO5eP0JwRIRvGGXt8Mc_QMucDqSWZFlQ_RTMmhGScyDn6_GX0AQ8wJJ-Lvwc82H2A4h0uUwjQ48MUXPExZPzgyx1exU3zPWxwsCFiF4cxZl8Ab21KHtIz9GRn-wzLU1-gbzcfvq5um_Xm46fV-3XjBFelkXLnrG4pJVZx2zFwRCnLqbJgmVbVuXOagFDWOdVJtdvKllMh20631nWOL9C7o-44bQfoHISSbG_G5Aebfppovfl7E_yd2cd7w5XWUrMq8OokkOKPCXIxg88O-t4GiFM2VGjWVlLSir78Bz3EKYX6nqFKX19rzqSo1Osj5VLMNZLd2Qwl5ndO5pxTZV9cuj-Tf1KpwNURyHUV9pAuTv6n9gsJ-p08</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1897793254</pqid></control><display><type>article</type><title>Spin memristive magnetic tunnel junctions with CoO-ZnO nano composite barrier</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Qiang ; Shen, Ting-Ting ; Cao, Yan-Ling ; Zhang, Kun ; Yan, Shi-Shen ; Tian, Yu-Feng ; Kang, Shi-Shou ; Zhao, Ming-Wen ; Dai, You-Yong ; Chen, Yan-Xue ; Liu, Guo-Lei ; Mei, Liang-Mo ; Wang, Xiao-Lin ; Grünberg, Peter</creator><creatorcontrib>Li, Qiang ; Shen, Ting-Ting ; Cao, Yan-Ling ; Zhang, Kun ; Yan, Shi-Shen ; Tian, Yu-Feng ; Kang, Shi-Shou ; Zhao, Ming-Wen ; Dai, You-Yong ; Chen, Yan-Xue ; Liu, Guo-Lei ; Mei, Liang-Mo ; Wang, Xiao-Lin ; Grünberg, Peter</creatorcontrib><description>The spin memristive devices combining memristance and tunneling magnetoresistance have promising applications in multibit nonvolatile data storage and artificial neuronal computing. However, it is a great challenge for simultaneous realization of large memristance and magnetoresistance in one nanoscale junction, because it is very hard to find a proper spacer layer which not only serves as good insulating layer for tunneling magnetoresistance but also easily switches between high and low resistance states under electrical field. Here we firstly propose to use nanon composite barrier layers of CoO-ZnO to fabricate the spin memristive Co/CoO-ZnO/Co magnetic tunnel junctions. The bipolar resistance switching ratio is high up to 90 and the TMR ratio of the high resistance state gets to 8% at room temperature, which leads to three resistance states. The bipolar resistance switching is explained by the metal-insulator transition of CoO
1−v
layer due to the migration of oxygen ions between CoO
1−v
and ZnO
1−v
.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep03835</identifier><identifier>PMID: 24452305</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/146 ; 639/301/1005/1008 ; 639/766/1130/2798 ; 639/766/119/995 ; Computer memory ; Data storage ; Humanities and Social Sciences ; Migration ; multidisciplinary ; Science ; Temperature effects</subject><ispartof>Scientific reports, 2014-01, Vol.4 (1), p.3835-3835, Article 3835</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Jan 2014</rights><rights>Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-55fca96110a83ad2ec088a318aea298204cc90e48acc8d58fb5631456d96acdc3</citedby><cites>FETCH-LOGICAL-c438t-55fca96110a83ad2ec088a318aea298204cc90e48acc8d58fb5631456d96acdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899592/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899592/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27907,27908,41103,42172,51559,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24452305$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Shen, Ting-Ting</creatorcontrib><creatorcontrib>Cao, Yan-Ling</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Yan, Shi-Shen</creatorcontrib><creatorcontrib>Tian, Yu-Feng</creatorcontrib><creatorcontrib>Kang, Shi-Shou</creatorcontrib><creatorcontrib>Zhao, Ming-Wen</creatorcontrib><creatorcontrib>Dai, You-Yong</creatorcontrib><creatorcontrib>Chen, Yan-Xue</creatorcontrib><creatorcontrib>Liu, Guo-Lei</creatorcontrib><creatorcontrib>Mei, Liang-Mo</creatorcontrib><creatorcontrib>Wang, Xiao-Lin</creatorcontrib><creatorcontrib>Grünberg, Peter</creatorcontrib><title>Spin memristive magnetic tunnel junctions with CoO-ZnO nano composite barrier</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The spin memristive devices combining memristance and tunneling magnetoresistance have promising applications in multibit nonvolatile data storage and artificial neuronal computing. However, it is a great challenge for simultaneous realization of large memristance and magnetoresistance in one nanoscale junction, because it is very hard to find a proper spacer layer which not only serves as good insulating layer for tunneling magnetoresistance but also easily switches between high and low resistance states under electrical field. Here we firstly propose to use nanon composite barrier layers of CoO-ZnO to fabricate the spin memristive Co/CoO-ZnO/Co magnetic tunnel junctions. The bipolar resistance switching ratio is high up to 90 and the TMR ratio of the high resistance state gets to 8% at room temperature, which leads to three resistance states. The bipolar resistance switching is explained by the metal-insulator transition of CoO
1−v
layer due to the migration of oxygen ions between CoO
1−v
and ZnO
1−v
.</description><subject>140/146</subject><subject>639/301/1005/1008</subject><subject>639/766/1130/2798</subject><subject>639/766/119/995</subject><subject>Computer memory</subject><subject>Data storage</subject><subject>Humanities and Social Sciences</subject><subject>Migration</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Temperature effects</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkU-rEzEUxYMottQu_AIScKMPRvN3XrIRpPh8QqULdeMmpJnbvpSZZEwy7-G3N9Jaqt7NvXB_nHsuB6HnlLyhhKu3OcFYO5eP0JwRIRvGGXt8Mc_QMucDqSWZFlQ_RTMmhGScyDn6_GX0AQ8wJJ-Lvwc82H2A4h0uUwjQ48MUXPExZPzgyx1exU3zPWxwsCFiF4cxZl8Ab21KHtIz9GRn-wzLU1-gbzcfvq5um_Xm46fV-3XjBFelkXLnrG4pJVZx2zFwRCnLqbJgmVbVuXOagFDWOdVJtdvKllMh20631nWOL9C7o-44bQfoHISSbG_G5Aebfppovfl7E_yd2cd7w5XWUrMq8OokkOKPCXIxg88O-t4GiFM2VGjWVlLSir78Bz3EKYX6nqFKX19rzqSo1Osj5VLMNZLd2Qwl5ndO5pxTZV9cuj-Tf1KpwNURyHUV9pAuTv6n9gsJ-p08</recordid><startdate>20140123</startdate><enddate>20140123</enddate><creator>Li, Qiang</creator><creator>Shen, Ting-Ting</creator><creator>Cao, Yan-Ling</creator><creator>Zhang, Kun</creator><creator>Yan, Shi-Shen</creator><creator>Tian, Yu-Feng</creator><creator>Kang, Shi-Shou</creator><creator>Zhao, Ming-Wen</creator><creator>Dai, You-Yong</creator><creator>Chen, Yan-Xue</creator><creator>Liu, Guo-Lei</creator><creator>Mei, Liang-Mo</creator><creator>Wang, Xiao-Lin</creator><creator>Grünberg, Peter</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140123</creationdate><title>Spin memristive magnetic tunnel junctions with CoO-ZnO nano composite barrier</title><author>Li, Qiang ; Shen, Ting-Ting ; Cao, Yan-Ling ; Zhang, Kun ; Yan, Shi-Shen ; Tian, Yu-Feng ; Kang, Shi-Shou ; Zhao, Ming-Wen ; Dai, You-Yong ; Chen, Yan-Xue ; Liu, Guo-Lei ; Mei, Liang-Mo ; Wang, Xiao-Lin ; Grünberg, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-55fca96110a83ad2ec088a318aea298204cc90e48acc8d58fb5631456d96acdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>140/146</topic><topic>639/301/1005/1008</topic><topic>639/766/1130/2798</topic><topic>639/766/119/995</topic><topic>Computer memory</topic><topic>Data storage</topic><topic>Humanities and Social Sciences</topic><topic>Migration</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Shen, Ting-Ting</creatorcontrib><creatorcontrib>Cao, Yan-Ling</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Yan, Shi-Shen</creatorcontrib><creatorcontrib>Tian, Yu-Feng</creatorcontrib><creatorcontrib>Kang, Shi-Shou</creatorcontrib><creatorcontrib>Zhao, Ming-Wen</creatorcontrib><creatorcontrib>Dai, You-Yong</creatorcontrib><creatorcontrib>Chen, Yan-Xue</creatorcontrib><creatorcontrib>Liu, Guo-Lei</creatorcontrib><creatorcontrib>Mei, Liang-Mo</creatorcontrib><creatorcontrib>Wang, Xiao-Lin</creatorcontrib><creatorcontrib>Grünberg, Peter</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qiang</au><au>Shen, Ting-Ting</au><au>Cao, Yan-Ling</au><au>Zhang, Kun</au><au>Yan, Shi-Shen</au><au>Tian, Yu-Feng</au><au>Kang, Shi-Shou</au><au>Zhao, Ming-Wen</au><au>Dai, You-Yong</au><au>Chen, Yan-Xue</au><au>Liu, Guo-Lei</au><au>Mei, Liang-Mo</au><au>Wang, Xiao-Lin</au><au>Grünberg, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin memristive magnetic tunnel junctions with CoO-ZnO nano composite barrier</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2014-01-23</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>3835</spage><epage>3835</epage><pages>3835-3835</pages><artnum>3835</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The spin memristive devices combining memristance and tunneling magnetoresistance have promising applications in multibit nonvolatile data storage and artificial neuronal computing. However, it is a great challenge for simultaneous realization of large memristance and magnetoresistance in one nanoscale junction, because it is very hard to find a proper spacer layer which not only serves as good insulating layer for tunneling magnetoresistance but also easily switches between high and low resistance states under electrical field. Here we firstly propose to use nanon composite barrier layers of CoO-ZnO to fabricate the spin memristive Co/CoO-ZnO/Co magnetic tunnel junctions. The bipolar resistance switching ratio is high up to 90 and the TMR ratio of the high resistance state gets to 8% at room temperature, which leads to three resistance states. The bipolar resistance switching is explained by the metal-insulator transition of CoO
1−v
layer due to the migration of oxygen ions between CoO
1−v
and ZnO
1−v
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24452305</pmid><doi>10.1038/srep03835</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2014-01, Vol.4 (1), p.3835-3835, Article 3835 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3899592 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 140/146 639/301/1005/1008 639/766/1130/2798 639/766/119/995 Computer memory Data storage Humanities and Social Sciences Migration multidisciplinary Science Temperature effects |
title | Spin memristive magnetic tunnel junctions with CoO-ZnO nano composite barrier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%20memristive%20magnetic%20tunnel%20junctions%20with%20CoO-ZnO%20nano%20composite%20barrier&rft.jtitle=Scientific%20reports&rft.au=Li,%20Qiang&rft.date=2014-01-23&rft.volume=4&rft.issue=1&rft.spage=3835&rft.epage=3835&rft.pages=3835-3835&rft.artnum=3835&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep03835&rft_dat=%3Cproquest_pubme%3E1897793254%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1897793254&rft_id=info:pmid/24452305&rfr_iscdi=true |