Plastid Lysophosphatidyl Acyltransferase Is Essential for Embryo Development in Arabidopsis
Lysophosphatidyl acyltransferase (LPAAT) is a pivotal enzyme controlling the metabolic flow of lysophosphatidic acid into different phosphatidic acids in diverse tissues. A search of the Arabidopsis genome database revealed five genes that could encode LPAAT-like proteins. We identified one of them,...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2004-03, Vol.134 (3), p.1206-1216 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1216 |
---|---|
container_issue | 3 |
container_start_page | 1206 |
container_title | Plant physiology (Bethesda) |
container_volume | 134 |
creator | Kim, Hyun Uk Huang, Anthony H C |
description | Lysophosphatidyl acyltransferase (LPAAT) is a pivotal enzyme controlling the metabolic flow of lysophosphatidic acid into different phosphatidic acids in diverse tissues. A search of the Arabidopsis genome database revealed five genes that could encode LPAAT-like proteins. We identified one of them, LPAAT1, to be the lone gene that encodes the plastid LPAAT. LPAAT1 could functionally complement a bacterial mutant that has defective LPAAT. Bacteria transformed with LPAAT1 produced LPAAT that had in vitro enzyme activity much higher on 16:0-coenzyme A than on 18:1-coenzyme A in the presence of 18:1-lysophosphatidic acid. LPAAT1 transcript was present in diverse organs, with the highest level in green leaves. A mutant having a T-DNA inserted into LPAAT1 was identified. The heterozygous mutant has no overt phenotype, and its leaf acyl composition is similar to that of the wild type. Selfing of a heterozygous mutant produced normal-sized and shrunken seeds in the Mendelian ratio of 3:1, and the shrunken seeds could not germinate. The shrunken seeds apparently were homozygous of the T-DNA-inserted LPAAT1, and development of the embryo within them was arrested at the heart-torpedo stage. This embryo lethality could be rescued by transformation of the heterozygous mutant with a 35S:LPAAT1 construct. The current findings of embryo death in the homozygous knockout mutant of the plastid LPAAT contrasts with earlier findings of a normal phenotype in the homozygous mutant deficient of the plastid glycerol-3-phosphate acyltransferase; both mutations block the synthesis of plastid phosphatidic acid. Reasons for the discrepancy between the contrasting phenotypes of the two mutants are discussed. |
doi_str_mv | 10.1104/pp.103.035832 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_389945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4281654</jstor_id><sourcerecordid>4281654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-6c68617367985d28dee3b61090b4a2c63f0d8f2282a238198b71430b4cdd27483</originalsourceid><addsrcrecordid>eNqFkb1vFDEQxS0EIkegpENom9Dt4a-1vQXFKRwh0klQQEVheb1ezpF3bTx7kfa_x6c7JaSimhm934ze6CH0luA1IZh_TGlNMFtj1ihGn6EVaRitacPVc7TCuPRYqfYCvQK4wxgTRvhLdEF4KwVlcoV-fQ8GZt9XuwVi2kdIe1PGJVQbu4Q5mwkGlw246haqLYCbZm9CNcRcbccuL7H67O5diGksSuWnapNN5_uYwMNr9GIwAdybc71EP79sf1x_rXffbm6vN7vaNkLOtbBCCSKZkK1qeqp651gnCG5xxw21gg24VwOlihrKFGlVJwlnRbR9TyVX7BJ9Ot1Nh250vS1Osgk6ZT-avOhovH6qTH6vf8d7zVTb8qbsfzjv5_jn4GDWowfrQjCTiwfQkkgulZD_BYlsKcf4CNYn0OYIkN3wYIZgfYxNp1Rapk-xFf79vx880uecCnB1BgxYE4aSi_XwyDVNSwU-Hnp34u5gjvlB51QR0XD2F4Z9qqc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17924007</pqid></control><display><type>article</type><title>Plastid Lysophosphatidyl Acyltransferase Is Essential for Embryo Development in Arabidopsis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Kim, Hyun Uk ; Huang, Anthony H C</creator><creatorcontrib>Kim, Hyun Uk ; Huang, Anthony H C</creatorcontrib><description>Lysophosphatidyl acyltransferase (LPAAT) is a pivotal enzyme controlling the metabolic flow of lysophosphatidic acid into different phosphatidic acids in diverse tissues. A search of the Arabidopsis genome database revealed five genes that could encode LPAAT-like proteins. We identified one of them, LPAAT1, to be the lone gene that encodes the plastid LPAAT. LPAAT1 could functionally complement a bacterial mutant that has defective LPAAT. Bacteria transformed with LPAAT1 produced LPAAT that had in vitro enzyme activity much higher on 16:0-coenzyme A than on 18:1-coenzyme A in the presence of 18:1-lysophosphatidic acid. LPAAT1 transcript was present in diverse organs, with the highest level in green leaves. A mutant having a T-DNA inserted into LPAAT1 was identified. The heterozygous mutant has no overt phenotype, and its leaf acyl composition is similar to that of the wild type. Selfing of a heterozygous mutant produced normal-sized and shrunken seeds in the Mendelian ratio of 3:1, and the shrunken seeds could not germinate. The shrunken seeds apparently were homozygous of the T-DNA-inserted LPAAT1, and development of the embryo within them was arrested at the heart-torpedo stage. This embryo lethality could be rescued by transformation of the heterozygous mutant with a 35S:LPAAT1 construct. The current findings of embryo death in the homozygous knockout mutant of the plastid LPAAT contrasts with earlier findings of a normal phenotype in the homozygous mutant deficient of the plastid glycerol-3-phosphate acyltransferase; both mutations block the synthesis of plastid phosphatidic acid. Reasons for the discrepancy between the contrasting phenotypes of the two mutants are discussed.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.103.035832</identifier><identifier>PMID: 14976237</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Acyltransferases - genetics ; Acyltransferases - metabolism ; Arabidopsis - embryology ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis thaliana ; Base Sequence ; Biochemical Processes and Macromolecular Structures ; Biological and medical sciences ; Biology and morphogenesis of the reproductive apparatus. Photoperiodism, vernalisation ; Complementary DNA ; DNA, Plant - genetics ; Embryogenesis ; Embryos ; Enzymes ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Fundamental and applied biological sciences. Psychology ; Genes, Plant ; Genes. Genome ; Genetic Complementation Test ; Heterozygote ; Homozygote ; Lipids ; Molecular and cellular biology ; Molecular genetics ; Mutation ; Phenotype ; Phenotypes ; Phylogeny ; Plant physiology and development ; Plants ; Plants, Genetically Modified ; Plastids ; Plastids - enzymology ; Proteins ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; RNA, Plant - genetics ; RNA, Plant - metabolism ; Seeds ; Tissue Distribution ; Transformation, Genetic ; Vegetative and sexual reproduction, floral biology, fructification</subject><ispartof>Plant physiology (Bethesda), 2004-03, Vol.134 (3), p.1206-1216</ispartof><rights>Copyright 2004 American Society of Plant Biologists</rights><rights>2004 INIST-CNRS</rights><rights>Copyright © 2004, The American Society for Plant Biologists 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-6c68617367985d28dee3b61090b4a2c63f0d8f2282a238198b71430b4cdd27483</citedby><cites>FETCH-LOGICAL-c567t-6c68617367985d28dee3b61090b4a2c63f0d8f2282a238198b71430b4cdd27483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4281654$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4281654$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15592602$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14976237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Hyun Uk</creatorcontrib><creatorcontrib>Huang, Anthony H C</creatorcontrib><title>Plastid Lysophosphatidyl Acyltransferase Is Essential for Embryo Development in Arabidopsis</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Lysophosphatidyl acyltransferase (LPAAT) is a pivotal enzyme controlling the metabolic flow of lysophosphatidic acid into different phosphatidic acids in diverse tissues. A search of the Arabidopsis genome database revealed five genes that could encode LPAAT-like proteins. We identified one of them, LPAAT1, to be the lone gene that encodes the plastid LPAAT. LPAAT1 could functionally complement a bacterial mutant that has defective LPAAT. Bacteria transformed with LPAAT1 produced LPAAT that had in vitro enzyme activity much higher on 16:0-coenzyme A than on 18:1-coenzyme A in the presence of 18:1-lysophosphatidic acid. LPAAT1 transcript was present in diverse organs, with the highest level in green leaves. A mutant having a T-DNA inserted into LPAAT1 was identified. The heterozygous mutant has no overt phenotype, and its leaf acyl composition is similar to that of the wild type. Selfing of a heterozygous mutant produced normal-sized and shrunken seeds in the Mendelian ratio of 3:1, and the shrunken seeds could not germinate. The shrunken seeds apparently were homozygous of the T-DNA-inserted LPAAT1, and development of the embryo within them was arrested at the heart-torpedo stage. This embryo lethality could be rescued by transformation of the heterozygous mutant with a 35S:LPAAT1 construct. The current findings of embryo death in the homozygous knockout mutant of the plastid LPAAT contrasts with earlier findings of a normal phenotype in the homozygous mutant deficient of the plastid glycerol-3-phosphate acyltransferase; both mutations block the synthesis of plastid phosphatidic acid. Reasons for the discrepancy between the contrasting phenotypes of the two mutants are discussed.</description><subject>Acyltransferases - genetics</subject><subject>Acyltransferases - metabolism</subject><subject>Arabidopsis - embryology</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Base Sequence</subject><subject>Biochemical Processes and Macromolecular Structures</subject><subject>Biological and medical sciences</subject><subject>Biology and morphogenesis of the reproductive apparatus. Photoperiodism, vernalisation</subject><subject>Complementary DNA</subject><subject>DNA, Plant - genetics</subject><subject>Embryogenesis</subject><subject>Embryos</subject><subject>Enzymes</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes, Plant</subject><subject>Genes. Genome</subject><subject>Genetic Complementation Test</subject><subject>Heterozygote</subject><subject>Homozygote</subject><subject>Lipids</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phylogeny</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Plants, Genetically Modified</subject><subject>Plastids</subject><subject>Plastids - enzymology</subject><subject>Proteins</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Plant - genetics</subject><subject>RNA, Plant - metabolism</subject><subject>Seeds</subject><subject>Tissue Distribution</subject><subject>Transformation, Genetic</subject><subject>Vegetative and sexual reproduction, floral biology, fructification</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb1vFDEQxS0EIkegpENom9Dt4a-1vQXFKRwh0klQQEVheb1ezpF3bTx7kfa_x6c7JaSimhm934ze6CH0luA1IZh_TGlNMFtj1ihGn6EVaRitacPVc7TCuPRYqfYCvQK4wxgTRvhLdEF4KwVlcoV-fQ8GZt9XuwVi2kdIe1PGJVQbu4Q5mwkGlw246haqLYCbZm9CNcRcbccuL7H67O5diGksSuWnapNN5_uYwMNr9GIwAdybc71EP79sf1x_rXffbm6vN7vaNkLOtbBCCSKZkK1qeqp651gnCG5xxw21gg24VwOlihrKFGlVJwlnRbR9TyVX7BJ9Ot1Nh250vS1Osgk6ZT-avOhovH6qTH6vf8d7zVTb8qbsfzjv5_jn4GDWowfrQjCTiwfQkkgulZD_BYlsKcf4CNYn0OYIkN3wYIZgfYxNp1Rapk-xFf79vx880uecCnB1BgxYE4aSi_XwyDVNSwU-Hnp34u5gjvlB51QR0XD2F4Z9qqc</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Kim, Hyun Uk</creator><creator>Huang, Anthony H C</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><general>The American Society for Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040301</creationdate><title>Plastid Lysophosphatidyl Acyltransferase Is Essential for Embryo Development in Arabidopsis</title><author>Kim, Hyun Uk ; Huang, Anthony H C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-6c68617367985d28dee3b61090b4a2c63f0d8f2282a238198b71430b4cdd27483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acyltransferases - genetics</topic><topic>Acyltransferases - metabolism</topic><topic>Arabidopsis - embryology</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Base Sequence</topic><topic>Biochemical Processes and Macromolecular Structures</topic><topic>Biological and medical sciences</topic><topic>Biology and morphogenesis of the reproductive apparatus. Photoperiodism, vernalisation</topic><topic>Complementary DNA</topic><topic>DNA, Plant - genetics</topic><topic>Embryogenesis</topic><topic>Embryos</topic><topic>Enzymes</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes, Plant</topic><topic>Genes. Genome</topic><topic>Genetic Complementation Test</topic><topic>Heterozygote</topic><topic>Homozygote</topic><topic>Lipids</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phylogeny</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Plants, Genetically Modified</topic><topic>Plastids</topic><topic>Plastids - enzymology</topic><topic>Proteins</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Plant - genetics</topic><topic>RNA, Plant - metabolism</topic><topic>Seeds</topic><topic>Tissue Distribution</topic><topic>Transformation, Genetic</topic><topic>Vegetative and sexual reproduction, floral biology, fructification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyun Uk</creatorcontrib><creatorcontrib>Huang, Anthony H C</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyun Uk</au><au>Huang, Anthony H C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plastid Lysophosphatidyl Acyltransferase Is Essential for Embryo Development in Arabidopsis</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2004-03-01</date><risdate>2004</risdate><volume>134</volume><issue>3</issue><spage>1206</spage><epage>1216</epage><pages>1206-1216</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Lysophosphatidyl acyltransferase (LPAAT) is a pivotal enzyme controlling the metabolic flow of lysophosphatidic acid into different phosphatidic acids in diverse tissues. A search of the Arabidopsis genome database revealed five genes that could encode LPAAT-like proteins. We identified one of them, LPAAT1, to be the lone gene that encodes the plastid LPAAT. LPAAT1 could functionally complement a bacterial mutant that has defective LPAAT. Bacteria transformed with LPAAT1 produced LPAAT that had in vitro enzyme activity much higher on 16:0-coenzyme A than on 18:1-coenzyme A in the presence of 18:1-lysophosphatidic acid. LPAAT1 transcript was present in diverse organs, with the highest level in green leaves. A mutant having a T-DNA inserted into LPAAT1 was identified. The heterozygous mutant has no overt phenotype, and its leaf acyl composition is similar to that of the wild type. Selfing of a heterozygous mutant produced normal-sized and shrunken seeds in the Mendelian ratio of 3:1, and the shrunken seeds could not germinate. The shrunken seeds apparently were homozygous of the T-DNA-inserted LPAAT1, and development of the embryo within them was arrested at the heart-torpedo stage. This embryo lethality could be rescued by transformation of the heterozygous mutant with a 35S:LPAAT1 construct. The current findings of embryo death in the homozygous knockout mutant of the plastid LPAAT contrasts with earlier findings of a normal phenotype in the homozygous mutant deficient of the plastid glycerol-3-phosphate acyltransferase; both mutations block the synthesis of plastid phosphatidic acid. Reasons for the discrepancy between the contrasting phenotypes of the two mutants are discussed.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>14976237</pmid><doi>10.1104/pp.103.035832</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2004-03, Vol.134 (3), p.1206-1216 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_389945 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current) |
subjects | Acyltransferases - genetics Acyltransferases - metabolism Arabidopsis - embryology Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis thaliana Base Sequence Biochemical Processes and Macromolecular Structures Biological and medical sciences Biology and morphogenesis of the reproductive apparatus. Photoperiodism, vernalisation Complementary DNA DNA, Plant - genetics Embryogenesis Embryos Enzymes Escherichia coli - enzymology Escherichia coli - genetics Fundamental and applied biological sciences. Psychology Genes, Plant Genes. Genome Genetic Complementation Test Heterozygote Homozygote Lipids Molecular and cellular biology Molecular genetics Mutation Phenotype Phenotypes Phylogeny Plant physiology and development Plants Plants, Genetically Modified Plastids Plastids - enzymology Proteins Recombinant Proteins - genetics Recombinant Proteins - metabolism RNA, Messenger - genetics RNA, Messenger - metabolism RNA, Plant - genetics RNA, Plant - metabolism Seeds Tissue Distribution Transformation, Genetic Vegetative and sexual reproduction, floral biology, fructification |
title | Plastid Lysophosphatidyl Acyltransferase Is Essential for Embryo Development in Arabidopsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plastid%20Lysophosphatidyl%20Acyltransferase%20Is%20Essential%20for%20Embryo%20Development%20in%20Arabidopsis&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Kim,%20Hyun%20Uk&rft.date=2004-03-01&rft.volume=134&rft.issue=3&rft.spage=1206&rft.epage=1216&rft.pages=1206-1216&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.103.035832&rft_dat=%3Cjstor_pubme%3E4281654%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17924007&rft_id=info:pmid/14976237&rft_jstor_id=4281654&rfr_iscdi=true |