Plastid Lysophosphatidyl Acyltransferase Is Essential for Embryo Development in Arabidopsis

Lysophosphatidyl acyltransferase (LPAAT) is a pivotal enzyme controlling the metabolic flow of lysophosphatidic acid into different phosphatidic acids in diverse tissues. A search of the Arabidopsis genome database revealed five genes that could encode LPAAT-like proteins. We identified one of them,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2004-03, Vol.134 (3), p.1206-1216
Hauptverfasser: Kim, Hyun Uk, Huang, Anthony H C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1216
container_issue 3
container_start_page 1206
container_title Plant physiology (Bethesda)
container_volume 134
creator Kim, Hyun Uk
Huang, Anthony H C
description Lysophosphatidyl acyltransferase (LPAAT) is a pivotal enzyme controlling the metabolic flow of lysophosphatidic acid into different phosphatidic acids in diverse tissues. A search of the Arabidopsis genome database revealed five genes that could encode LPAAT-like proteins. We identified one of them, LPAAT1, to be the lone gene that encodes the plastid LPAAT. LPAAT1 could functionally complement a bacterial mutant that has defective LPAAT. Bacteria transformed with LPAAT1 produced LPAAT that had in vitro enzyme activity much higher on 16:0-coenzyme A than on 18:1-coenzyme A in the presence of 18:1-lysophosphatidic acid. LPAAT1 transcript was present in diverse organs, with the highest level in green leaves. A mutant having a T-DNA inserted into LPAAT1 was identified. The heterozygous mutant has no overt phenotype, and its leaf acyl composition is similar to that of the wild type. Selfing of a heterozygous mutant produced normal-sized and shrunken seeds in the Mendelian ratio of 3:1, and the shrunken seeds could not germinate. The shrunken seeds apparently were homozygous of the T-DNA-inserted LPAAT1, and development of the embryo within them was arrested at the heart-torpedo stage. This embryo lethality could be rescued by transformation of the heterozygous mutant with a 35S:LPAAT1 construct. The current findings of embryo death in the homozygous knockout mutant of the plastid LPAAT contrasts with earlier findings of a normal phenotype in the homozygous mutant deficient of the plastid glycerol-3-phosphate acyltransferase; both mutations block the synthesis of plastid phosphatidic acid. Reasons for the discrepancy between the contrasting phenotypes of the two mutants are discussed.
doi_str_mv 10.1104/pp.103.035832
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_389945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4281654</jstor_id><sourcerecordid>4281654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-6c68617367985d28dee3b61090b4a2c63f0d8f2282a238198b71430b4cdd27483</originalsourceid><addsrcrecordid>eNqFkb1vFDEQxS0EIkegpENom9Dt4a-1vQXFKRwh0klQQEVheb1ezpF3bTx7kfa_x6c7JaSimhm934ze6CH0luA1IZh_TGlNMFtj1ihGn6EVaRitacPVc7TCuPRYqfYCvQK4wxgTRvhLdEF4KwVlcoV-fQ8GZt9XuwVi2kdIe1PGJVQbu4Q5mwkGlw246haqLYCbZm9CNcRcbccuL7H67O5diGksSuWnapNN5_uYwMNr9GIwAdybc71EP79sf1x_rXffbm6vN7vaNkLOtbBCCSKZkK1qeqp651gnCG5xxw21gg24VwOlihrKFGlVJwlnRbR9TyVX7BJ9Ot1Nh250vS1Osgk6ZT-avOhovH6qTH6vf8d7zVTb8qbsfzjv5_jn4GDWowfrQjCTiwfQkkgulZD_BYlsKcf4CNYn0OYIkN3wYIZgfYxNp1Rapk-xFf79vx880uecCnB1BgxYE4aSi_XwyDVNSwU-Hnp34u5gjvlB51QR0XD2F4Z9qqc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17924007</pqid></control><display><type>article</type><title>Plastid Lysophosphatidyl Acyltransferase Is Essential for Embryo Development in Arabidopsis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Kim, Hyun Uk ; Huang, Anthony H C</creator><creatorcontrib>Kim, Hyun Uk ; Huang, Anthony H C</creatorcontrib><description>Lysophosphatidyl acyltransferase (LPAAT) is a pivotal enzyme controlling the metabolic flow of lysophosphatidic acid into different phosphatidic acids in diverse tissues. A search of the Arabidopsis genome database revealed five genes that could encode LPAAT-like proteins. We identified one of them, LPAAT1, to be the lone gene that encodes the plastid LPAAT. LPAAT1 could functionally complement a bacterial mutant that has defective LPAAT. Bacteria transformed with LPAAT1 produced LPAAT that had in vitro enzyme activity much higher on 16:0-coenzyme A than on 18:1-coenzyme A in the presence of 18:1-lysophosphatidic acid. LPAAT1 transcript was present in diverse organs, with the highest level in green leaves. A mutant having a T-DNA inserted into LPAAT1 was identified. The heterozygous mutant has no overt phenotype, and its leaf acyl composition is similar to that of the wild type. Selfing of a heterozygous mutant produced normal-sized and shrunken seeds in the Mendelian ratio of 3:1, and the shrunken seeds could not germinate. The shrunken seeds apparently were homozygous of the T-DNA-inserted LPAAT1, and development of the embryo within them was arrested at the heart-torpedo stage. This embryo lethality could be rescued by transformation of the heterozygous mutant with a 35S:LPAAT1 construct. The current findings of embryo death in the homozygous knockout mutant of the plastid LPAAT contrasts with earlier findings of a normal phenotype in the homozygous mutant deficient of the plastid glycerol-3-phosphate acyltransferase; both mutations block the synthesis of plastid phosphatidic acid. Reasons for the discrepancy between the contrasting phenotypes of the two mutants are discussed.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.103.035832</identifier><identifier>PMID: 14976237</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Acyltransferases - genetics ; Acyltransferases - metabolism ; Arabidopsis - embryology ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis thaliana ; Base Sequence ; Biochemical Processes and Macromolecular Structures ; Biological and medical sciences ; Biology and morphogenesis of the reproductive apparatus. Photoperiodism, vernalisation ; Complementary DNA ; DNA, Plant - genetics ; Embryogenesis ; Embryos ; Enzymes ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Fundamental and applied biological sciences. Psychology ; Genes, Plant ; Genes. Genome ; Genetic Complementation Test ; Heterozygote ; Homozygote ; Lipids ; Molecular and cellular biology ; Molecular genetics ; Mutation ; Phenotype ; Phenotypes ; Phylogeny ; Plant physiology and development ; Plants ; Plants, Genetically Modified ; Plastids ; Plastids - enzymology ; Proteins ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; RNA, Plant - genetics ; RNA, Plant - metabolism ; Seeds ; Tissue Distribution ; Transformation, Genetic ; Vegetative and sexual reproduction, floral biology, fructification</subject><ispartof>Plant physiology (Bethesda), 2004-03, Vol.134 (3), p.1206-1216</ispartof><rights>Copyright 2004 American Society of Plant Biologists</rights><rights>2004 INIST-CNRS</rights><rights>Copyright © 2004, The American Society for Plant Biologists 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-6c68617367985d28dee3b61090b4a2c63f0d8f2282a238198b71430b4cdd27483</citedby><cites>FETCH-LOGICAL-c567t-6c68617367985d28dee3b61090b4a2c63f0d8f2282a238198b71430b4cdd27483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4281654$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4281654$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15592602$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14976237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Hyun Uk</creatorcontrib><creatorcontrib>Huang, Anthony H C</creatorcontrib><title>Plastid Lysophosphatidyl Acyltransferase Is Essential for Embryo Development in Arabidopsis</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Lysophosphatidyl acyltransferase (LPAAT) is a pivotal enzyme controlling the metabolic flow of lysophosphatidic acid into different phosphatidic acids in diverse tissues. A search of the Arabidopsis genome database revealed five genes that could encode LPAAT-like proteins. We identified one of them, LPAAT1, to be the lone gene that encodes the plastid LPAAT. LPAAT1 could functionally complement a bacterial mutant that has defective LPAAT. Bacteria transformed with LPAAT1 produced LPAAT that had in vitro enzyme activity much higher on 16:0-coenzyme A than on 18:1-coenzyme A in the presence of 18:1-lysophosphatidic acid. LPAAT1 transcript was present in diverse organs, with the highest level in green leaves. A mutant having a T-DNA inserted into LPAAT1 was identified. The heterozygous mutant has no overt phenotype, and its leaf acyl composition is similar to that of the wild type. Selfing of a heterozygous mutant produced normal-sized and shrunken seeds in the Mendelian ratio of 3:1, and the shrunken seeds could not germinate. The shrunken seeds apparently were homozygous of the T-DNA-inserted LPAAT1, and development of the embryo within them was arrested at the heart-torpedo stage. This embryo lethality could be rescued by transformation of the heterozygous mutant with a 35S:LPAAT1 construct. The current findings of embryo death in the homozygous knockout mutant of the plastid LPAAT contrasts with earlier findings of a normal phenotype in the homozygous mutant deficient of the plastid glycerol-3-phosphate acyltransferase; both mutations block the synthesis of plastid phosphatidic acid. Reasons for the discrepancy between the contrasting phenotypes of the two mutants are discussed.</description><subject>Acyltransferases - genetics</subject><subject>Acyltransferases - metabolism</subject><subject>Arabidopsis - embryology</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Base Sequence</subject><subject>Biochemical Processes and Macromolecular Structures</subject><subject>Biological and medical sciences</subject><subject>Biology and morphogenesis of the reproductive apparatus. Photoperiodism, vernalisation</subject><subject>Complementary DNA</subject><subject>DNA, Plant - genetics</subject><subject>Embryogenesis</subject><subject>Embryos</subject><subject>Enzymes</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes, Plant</subject><subject>Genes. Genome</subject><subject>Genetic Complementation Test</subject><subject>Heterozygote</subject><subject>Homozygote</subject><subject>Lipids</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phylogeny</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Plants, Genetically Modified</subject><subject>Plastids</subject><subject>Plastids - enzymology</subject><subject>Proteins</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Plant - genetics</subject><subject>RNA, Plant - metabolism</subject><subject>Seeds</subject><subject>Tissue Distribution</subject><subject>Transformation, Genetic</subject><subject>Vegetative and sexual reproduction, floral biology, fructification</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb1vFDEQxS0EIkegpENom9Dt4a-1vQXFKRwh0klQQEVheb1ezpF3bTx7kfa_x6c7JaSimhm934ze6CH0luA1IZh_TGlNMFtj1ihGn6EVaRitacPVc7TCuPRYqfYCvQK4wxgTRvhLdEF4KwVlcoV-fQ8GZt9XuwVi2kdIe1PGJVQbu4Q5mwkGlw246haqLYCbZm9CNcRcbccuL7H67O5diGksSuWnapNN5_uYwMNr9GIwAdybc71EP79sf1x_rXffbm6vN7vaNkLOtbBCCSKZkK1qeqp651gnCG5xxw21gg24VwOlihrKFGlVJwlnRbR9TyVX7BJ9Ot1Nh250vS1Osgk6ZT-avOhovH6qTH6vf8d7zVTb8qbsfzjv5_jn4GDWowfrQjCTiwfQkkgulZD_BYlsKcf4CNYn0OYIkN3wYIZgfYxNp1Rapk-xFf79vx880uecCnB1BgxYE4aSi_XwyDVNSwU-Hnp34u5gjvlB51QR0XD2F4Z9qqc</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Kim, Hyun Uk</creator><creator>Huang, Anthony H C</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><general>The American Society for Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040301</creationdate><title>Plastid Lysophosphatidyl Acyltransferase Is Essential for Embryo Development in Arabidopsis</title><author>Kim, Hyun Uk ; Huang, Anthony H C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-6c68617367985d28dee3b61090b4a2c63f0d8f2282a238198b71430b4cdd27483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acyltransferases - genetics</topic><topic>Acyltransferases - metabolism</topic><topic>Arabidopsis - embryology</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Base Sequence</topic><topic>Biochemical Processes and Macromolecular Structures</topic><topic>Biological and medical sciences</topic><topic>Biology and morphogenesis of the reproductive apparatus. Photoperiodism, vernalisation</topic><topic>Complementary DNA</topic><topic>DNA, Plant - genetics</topic><topic>Embryogenesis</topic><topic>Embryos</topic><topic>Enzymes</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes, Plant</topic><topic>Genes. Genome</topic><topic>Genetic Complementation Test</topic><topic>Heterozygote</topic><topic>Homozygote</topic><topic>Lipids</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phylogeny</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Plants, Genetically Modified</topic><topic>Plastids</topic><topic>Plastids - enzymology</topic><topic>Proteins</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Plant - genetics</topic><topic>RNA, Plant - metabolism</topic><topic>Seeds</topic><topic>Tissue Distribution</topic><topic>Transformation, Genetic</topic><topic>Vegetative and sexual reproduction, floral biology, fructification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyun Uk</creatorcontrib><creatorcontrib>Huang, Anthony H C</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyun Uk</au><au>Huang, Anthony H C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plastid Lysophosphatidyl Acyltransferase Is Essential for Embryo Development in Arabidopsis</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2004-03-01</date><risdate>2004</risdate><volume>134</volume><issue>3</issue><spage>1206</spage><epage>1216</epage><pages>1206-1216</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Lysophosphatidyl acyltransferase (LPAAT) is a pivotal enzyme controlling the metabolic flow of lysophosphatidic acid into different phosphatidic acids in diverse tissues. A search of the Arabidopsis genome database revealed five genes that could encode LPAAT-like proteins. We identified one of them, LPAAT1, to be the lone gene that encodes the plastid LPAAT. LPAAT1 could functionally complement a bacterial mutant that has defective LPAAT. Bacteria transformed with LPAAT1 produced LPAAT that had in vitro enzyme activity much higher on 16:0-coenzyme A than on 18:1-coenzyme A in the presence of 18:1-lysophosphatidic acid. LPAAT1 transcript was present in diverse organs, with the highest level in green leaves. A mutant having a T-DNA inserted into LPAAT1 was identified. The heterozygous mutant has no overt phenotype, and its leaf acyl composition is similar to that of the wild type. Selfing of a heterozygous mutant produced normal-sized and shrunken seeds in the Mendelian ratio of 3:1, and the shrunken seeds could not germinate. The shrunken seeds apparently were homozygous of the T-DNA-inserted LPAAT1, and development of the embryo within them was arrested at the heart-torpedo stage. This embryo lethality could be rescued by transformation of the heterozygous mutant with a 35S:LPAAT1 construct. The current findings of embryo death in the homozygous knockout mutant of the plastid LPAAT contrasts with earlier findings of a normal phenotype in the homozygous mutant deficient of the plastid glycerol-3-phosphate acyltransferase; both mutations block the synthesis of plastid phosphatidic acid. Reasons for the discrepancy between the contrasting phenotypes of the two mutants are discussed.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>14976237</pmid><doi>10.1104/pp.103.035832</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2004-03, Vol.134 (3), p.1206-1216
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_389945
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects Acyltransferases - genetics
Acyltransferases - metabolism
Arabidopsis - embryology
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis thaliana
Base Sequence
Biochemical Processes and Macromolecular Structures
Biological and medical sciences
Biology and morphogenesis of the reproductive apparatus. Photoperiodism, vernalisation
Complementary DNA
DNA, Plant - genetics
Embryogenesis
Embryos
Enzymes
Escherichia coli - enzymology
Escherichia coli - genetics
Fundamental and applied biological sciences. Psychology
Genes, Plant
Genes. Genome
Genetic Complementation Test
Heterozygote
Homozygote
Lipids
Molecular and cellular biology
Molecular genetics
Mutation
Phenotype
Phenotypes
Phylogeny
Plant physiology and development
Plants
Plants, Genetically Modified
Plastids
Plastids - enzymology
Proteins
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
RNA, Plant - genetics
RNA, Plant - metabolism
Seeds
Tissue Distribution
Transformation, Genetic
Vegetative and sexual reproduction, floral biology, fructification
title Plastid Lysophosphatidyl Acyltransferase Is Essential for Embryo Development in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plastid%20Lysophosphatidyl%20Acyltransferase%20Is%20Essential%20for%20Embryo%20Development%20in%20Arabidopsis&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Kim,%20Hyun%20Uk&rft.date=2004-03-01&rft.volume=134&rft.issue=3&rft.spage=1206&rft.epage=1216&rft.pages=1206-1216&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.103.035832&rft_dat=%3Cjstor_pubme%3E4281654%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17924007&rft_id=info:pmid/14976237&rft_jstor_id=4281654&rfr_iscdi=true