Estimating the Per-Exposure Effect of Infectious Disease Interventions

The average effect of an infectious disease intervention (eg, a vaccine) varies across populations with different degrees of exposure to the pathogen. As a result, many investigators favor a per-exposure effect measure that is considered independent of the population level of exposure and that can b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Epidemiology (Cambridge, Mass.) Mass.), 2014-01, Vol.25 (1), p.134-138
Hauptverfasser: O'Hagan, Justin J., Lipsitch, Marc, Hernán, Miguel A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue 1
container_start_page 134
container_title Epidemiology (Cambridge, Mass.)
container_volume 25
creator O'Hagan, Justin J.
Lipsitch, Marc
Hernán, Miguel A.
description The average effect of an infectious disease intervention (eg, a vaccine) varies across populations with different degrees of exposure to the pathogen. As a result, many investigators favor a per-exposure effect measure that is considered independent of the population level of exposure and that can be used in simulations to estimate the total disease burden averted by an intervention across different populations. However, while per-exposure effects are frequently estimated, the quantity of interest is often poorly defined, and assumptions in its calculation are typically left implicit. In this article, we build upon work by Halloran and Struchiner (Epidemiology. 1995;6:142–151) to develop a formal definition of the per-exposure effect and discuss conditions necessary for its unbiased estimation. With greater care paid to the parameterization of transmission models, their results can be better understood and can thereby be of greater value to decision-makers.
doi_str_mv 10.1097/EDE.0000000000000003
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3898464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24759034</jstor_id><sourcerecordid>24759034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5093-395b91e52fbbf8f2c56a34200aedabd86207f6d877012a30bf882133278800423</originalsourceid><addsrcrecordid>eNqFkU1P3EAMhkcVVaG0_6BFuVTqJXQ-M5NLpQpCi4RED-15NMl62EA2sx0nfPz7Gu2WAhfmMpb92H5tM_ZB8EPBa_ulOW4O-dOnXrE9YZQojXZ2h2yudalqp3bZW8RLzoVVwrxhu1JLzStT7bGTBqd-FaZ-vCimJRQ_IZfN7TrhnKFoYoRuKlIsTsd7q08zFsc9QkAg1wT5GkbyjviOvY5hQHi__ffZ75Pm19GP8uz8--nRt7OyM7xWpMW0tQAjY9tGF2VnqqC05DzAIrQLV0luY7Vw1nIhg-IEOSmUktY5zrVU--zrpu56blew6Kh9DoNfZ5oh3_kUev80MvZLf5GuvXK105WmAp-3BXL6MwNOftVjB8MQRqDpvCDI1aTJEao3aJcTYob40EZwf38CTyfwz09AaQePJT4k_ds5AZ-2QMAuDDGHsevxP-eEsZU0xLkNd5MGWjVeDfMNZL-EMEzLlzR83KRe4pTyIwnW1Fxp9RcELKih</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464893428</pqid></control><display><type>article</type><title>Estimating the Per-Exposure Effect of Infectious Disease Interventions</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Journals@Ovid Complete</source><creator>O'Hagan, Justin J. ; Lipsitch, Marc ; Hernán, Miguel A.</creator><creatorcontrib>O'Hagan, Justin J. ; Lipsitch, Marc ; Hernán, Miguel A.</creatorcontrib><description>The average effect of an infectious disease intervention (eg, a vaccine) varies across populations with different degrees of exposure to the pathogen. As a result, many investigators favor a per-exposure effect measure that is considered independent of the population level of exposure and that can be used in simulations to estimate the total disease burden averted by an intervention across different populations. However, while per-exposure effects are frequently estimated, the quantity of interest is often poorly defined, and assumptions in its calculation are typically left implicit. In this article, we build upon work by Halloran and Struchiner (Epidemiology. 1995;6:142–151) to develop a formal definition of the per-exposure effect and discuss conditions necessary for its unbiased estimation. With greater care paid to the parameterization of transmission models, their results can be better understood and can thereby be of greater value to decision-makers.</description><identifier>ISSN: 1044-3983</identifier><identifier>EISSN: 1531-5487</identifier><identifier>DOI: 10.1097/EDE.0000000000000003</identifier><identifier>PMID: 24240656</identifier><language>eng</language><publisher>Philadelphia, PA: Lippincott Williams &amp; Wilkins, Inc</publisher><subject>AIDS vaccines ; Analytical estimating ; Biological and medical sciences ; Communicable Disease Control - methods ; Communicable Disease Control - statistics &amp; numerical data ; Communicable Diseases - transmission ; Disease transmission ; Epidemiology ; Estimation bias ; General aspects ; Humans ; Infections ; Infectious Disease ; Infectious diseases ; Inference ; Medical sciences ; Miscellaneous ; Models, Statistical ; Pathogens ; Public health. Hygiene ; Public health. Hygiene-occupational medicine ; Treatment Outcome ; Vaccination</subject><ispartof>Epidemiology (Cambridge, Mass.), 2014-01, Vol.25 (1), p.134-138</ispartof><rights>Copyright © 2013 Lippincott Williams &amp; Wilkins, Inc</rights><rights>2014 by Lippincott Williams &amp; Wilkins, Inc</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5093-395b91e52fbbf8f2c56a34200aedabd86207f6d877012a30bf882133278800423</citedby><cites>FETCH-LOGICAL-c5093-395b91e52fbbf8f2c56a34200aedabd86207f6d877012a30bf882133278800423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24759034$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24759034$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,4009,27901,27902,27903,57994,58227</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28157625$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24240656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Hagan, Justin J.</creatorcontrib><creatorcontrib>Lipsitch, Marc</creatorcontrib><creatorcontrib>Hernán, Miguel A.</creatorcontrib><title>Estimating the Per-Exposure Effect of Infectious Disease Interventions</title><title>Epidemiology (Cambridge, Mass.)</title><addtitle>Epidemiology</addtitle><description>The average effect of an infectious disease intervention (eg, a vaccine) varies across populations with different degrees of exposure to the pathogen. As a result, many investigators favor a per-exposure effect measure that is considered independent of the population level of exposure and that can be used in simulations to estimate the total disease burden averted by an intervention across different populations. However, while per-exposure effects are frequently estimated, the quantity of interest is often poorly defined, and assumptions in its calculation are typically left implicit. In this article, we build upon work by Halloran and Struchiner (Epidemiology. 1995;6:142–151) to develop a formal definition of the per-exposure effect and discuss conditions necessary for its unbiased estimation. With greater care paid to the parameterization of transmission models, their results can be better understood and can thereby be of greater value to decision-makers.</description><subject>AIDS vaccines</subject><subject>Analytical estimating</subject><subject>Biological and medical sciences</subject><subject>Communicable Disease Control - methods</subject><subject>Communicable Disease Control - statistics &amp; numerical data</subject><subject>Communicable Diseases - transmission</subject><subject>Disease transmission</subject><subject>Epidemiology</subject><subject>Estimation bias</subject><subject>General aspects</subject><subject>Humans</subject><subject>Infections</subject><subject>Infectious Disease</subject><subject>Infectious diseases</subject><subject>Inference</subject><subject>Medical sciences</subject><subject>Miscellaneous</subject><subject>Models, Statistical</subject><subject>Pathogens</subject><subject>Public health. Hygiene</subject><subject>Public health. Hygiene-occupational medicine</subject><subject>Treatment Outcome</subject><subject>Vaccination</subject><issn>1044-3983</issn><issn>1531-5487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1P3EAMhkcVVaG0_6BFuVTqJXQ-M5NLpQpCi4RED-15NMl62EA2sx0nfPz7Gu2WAhfmMpb92H5tM_ZB8EPBa_ulOW4O-dOnXrE9YZQojXZ2h2yudalqp3bZW8RLzoVVwrxhu1JLzStT7bGTBqd-FaZ-vCimJRQ_IZfN7TrhnKFoYoRuKlIsTsd7q08zFsc9QkAg1wT5GkbyjviOvY5hQHi__ffZ75Pm19GP8uz8--nRt7OyM7xWpMW0tQAjY9tGF2VnqqC05DzAIrQLV0luY7Vw1nIhg-IEOSmUktY5zrVU--zrpu56blew6Kh9DoNfZ5oh3_kUev80MvZLf5GuvXK105WmAp-3BXL6MwNOftVjB8MQRqDpvCDI1aTJEao3aJcTYob40EZwf38CTyfwz09AaQePJT4k_ds5AZ-2QMAuDDGHsevxP-eEsZU0xLkNd5MGWjVeDfMNZL-EMEzLlzR83KRe4pTyIwnW1Fxp9RcELKih</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>O'Hagan, Justin J.</creator><creator>Lipsitch, Marc</creator><creator>Hernán, Miguel A.</creator><general>Lippincott Williams &amp; Wilkins, Inc</general><general>by Lippincott Williams &amp; Wilkins, Inc</general><general>Lippincott Williams &amp; Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Estimating the Per-Exposure Effect of Infectious Disease Interventions</title><author>O'Hagan, Justin J. ; Lipsitch, Marc ; Hernán, Miguel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5093-395b91e52fbbf8f2c56a34200aedabd86207f6d877012a30bf882133278800423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>AIDS vaccines</topic><topic>Analytical estimating</topic><topic>Biological and medical sciences</topic><topic>Communicable Disease Control - methods</topic><topic>Communicable Disease Control - statistics &amp; numerical data</topic><topic>Communicable Diseases - transmission</topic><topic>Disease transmission</topic><topic>Epidemiology</topic><topic>Estimation bias</topic><topic>General aspects</topic><topic>Humans</topic><topic>Infections</topic><topic>Infectious Disease</topic><topic>Infectious diseases</topic><topic>Inference</topic><topic>Medical sciences</topic><topic>Miscellaneous</topic><topic>Models, Statistical</topic><topic>Pathogens</topic><topic>Public health. Hygiene</topic><topic>Public health. Hygiene-occupational medicine</topic><topic>Treatment Outcome</topic><topic>Vaccination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Hagan, Justin J.</creatorcontrib><creatorcontrib>Lipsitch, Marc</creatorcontrib><creatorcontrib>Hernán, Miguel A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Epidemiology (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Hagan, Justin J.</au><au>Lipsitch, Marc</au><au>Hernán, Miguel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the Per-Exposure Effect of Infectious Disease Interventions</atitle><jtitle>Epidemiology (Cambridge, Mass.)</jtitle><addtitle>Epidemiology</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>25</volume><issue>1</issue><spage>134</spage><epage>138</epage><pages>134-138</pages><issn>1044-3983</issn><eissn>1531-5487</eissn><abstract>The average effect of an infectious disease intervention (eg, a vaccine) varies across populations with different degrees of exposure to the pathogen. As a result, many investigators favor a per-exposure effect measure that is considered independent of the population level of exposure and that can be used in simulations to estimate the total disease burden averted by an intervention across different populations. However, while per-exposure effects are frequently estimated, the quantity of interest is often poorly defined, and assumptions in its calculation are typically left implicit. In this article, we build upon work by Halloran and Struchiner (Epidemiology. 1995;6:142–151) to develop a formal definition of the per-exposure effect and discuss conditions necessary for its unbiased estimation. With greater care paid to the parameterization of transmission models, their results can be better understood and can thereby be of greater value to decision-makers.</abstract><cop>Philadelphia, PA</cop><pub>Lippincott Williams &amp; Wilkins, Inc</pub><pmid>24240656</pmid><doi>10.1097/EDE.0000000000000003</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1044-3983
ispartof Epidemiology (Cambridge, Mass.), 2014-01, Vol.25 (1), p.134-138
issn 1044-3983
1531-5487
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3898464
source Jstor Complete Legacy; MEDLINE; Journals@Ovid Complete
subjects AIDS vaccines
Analytical estimating
Biological and medical sciences
Communicable Disease Control - methods
Communicable Disease Control - statistics & numerical data
Communicable Diseases - transmission
Disease transmission
Epidemiology
Estimation bias
General aspects
Humans
Infections
Infectious Disease
Infectious diseases
Inference
Medical sciences
Miscellaneous
Models, Statistical
Pathogens
Public health. Hygiene
Public health. Hygiene-occupational medicine
Treatment Outcome
Vaccination
title Estimating the Per-Exposure Effect of Infectious Disease Interventions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20Per-Exposure%20Effect%20of%20Infectious%20Disease%20Interventions&rft.jtitle=Epidemiology%20(Cambridge,%20Mass.)&rft.au=O'Hagan,%20Justin%20J.&rft.date=2014-01-01&rft.volume=25&rft.issue=1&rft.spage=134&rft.epage=138&rft.pages=134-138&rft.issn=1044-3983&rft.eissn=1531-5487&rft_id=info:doi/10.1097/EDE.0000000000000003&rft_dat=%3Cjstor_pubme%3E24759034%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464893428&rft_id=info:pmid/24240656&rft_jstor_id=24759034&rfr_iscdi=true