Active vision in marmosets: a model system for visual neuroscience

The common marmoset (Callithrix jacchus), a small-bodied New World primate, offers several advantages to complement vision research in larger primates. Studies in the anesthetized marmoset have detailed the anatomy and physiology of their visual system (Rosa et al., 2009) while studies of auditory a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2014-01, Vol.34 (4), p.1183-1194
Hauptverfasser: Mitchell, Jude F, Reynolds, John H, Miller, Cory T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The common marmoset (Callithrix jacchus), a small-bodied New World primate, offers several advantages to complement vision research in larger primates. Studies in the anesthetized marmoset have detailed the anatomy and physiology of their visual system (Rosa et al., 2009) while studies of auditory and vocal processing have established their utility for awake and behaving neurophysiological investigations (Lu et al., 2001a,b; Eliades and Wang, 2008a,b; Osmanski and Wang, 2011; Remington et al., 2012). However, a critical unknown is whether marmosets can perform visual tasks under head restraint. This has been essential for studies in macaques, enabling both accurate eye tracking and head stabilization for neurophysiology. In one set of experiments we compared the free viewing behavior of head-fixed marmosets to that of macaques, and found that their saccadic behavior is comparable across a number of saccade metrics and that saccades target similar regions of interest including faces. In a second set of experiments we applied behavioral conditioning techniques to determine whether the marmoset could control fixation for liquid reward. Two marmosets could fixate a central point and ignore peripheral flashing stimuli, as needed for receptive field mapping. Both marmosets also performed an orientation discrimination task, exhibiting a saturating psychometric function with reliable performance and shorter reaction times for easier discriminations. These data suggest that the marmoset is a viable model for studies of active vision and its underlying neural mechanisms.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.3899-13.2014