Bismuth incorporation and the role of ordering in GaAsBi/GaAs structures

The structure and composition of single GaAsBi/GaAs epilayers grown by molecular beam epitaxy were investigated by optical and transmission electron microscopy techniques. Firstly, the GaAsBi layers exhibit two distinct regions and a varying Bi composition profile in the growth direction. In the low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale research letters 2014-01, Vol.9 (1), p.23-23, Article 23
Hauptverfasser: Reyes, Daniel F, Bastiman, Faebian, Hunter, Chris J, Sales, David L, Sanchez, Ana M, David, John PR, González, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The structure and composition of single GaAsBi/GaAs epilayers grown by molecular beam epitaxy were investigated by optical and transmission electron microscopy techniques. Firstly, the GaAsBi layers exhibit two distinct regions and a varying Bi composition profile in the growth direction. In the lower (25 nm) region, the Bi content decays exponentially from an initial maximum value, while the upper region comprises an almost constant Bi content until the end of the layer. Secondly, despite the relatively low Bi content, CuPt B -type ordering was observed both in electron diffraction patterns and in fast Fourier transform reconstructions from high-resolution transmission electron microscopy images. The estimation of the long-range ordering parameter and the development of ordering maps by using geometrical phase algorithms indicate a direct connection between the solubility of Bi and the amount of ordering. The occurrence of both phase separation and atomic ordering has a significant effect on the optical properties of these layers. PACS 78.55.Cr III-V semiconductors; 68.55.Nq composition and phase identification; 68.55.Ln defects and impurities: doping, implantation, distribution, concentration, etc; 64.75.St phase separation and segregation in
ISSN:1931-7573
1556-276X
1556-276X
DOI:10.1186/1556-276X-9-23