Measuring single cell mass, volume, and density with dual suspended microchannel resonators

Cell size, measured as either volume or mass, is a fundamental indicator of cell state. Far more tightly regulated than size is density, the ratio between mass and volume, which can be used to distinguish between cell populations even when volume and mass appear to remain constant. Here we expand up...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2014-02, Vol.14 (3), p.569-576
Hauptverfasser: Bryan, Andrea K, Hecht, Vivian C, Shen, Wenjiang, Payer, Kristofor, Grover, William H, Manalis, Scott R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 576
container_issue 3
container_start_page 569
container_title Lab on a chip
container_volume 14
creator Bryan, Andrea K
Hecht, Vivian C
Shen, Wenjiang
Payer, Kristofor
Grover, William H
Manalis, Scott R
description Cell size, measured as either volume or mass, is a fundamental indicator of cell state. Far more tightly regulated than size is density, the ratio between mass and volume, which can be used to distinguish between cell populations even when volume and mass appear to remain constant. Here we expand upon a previous method for measuring cell density involving a suspended microchannel resonator (SMR). We introduce a new device, the dual SMR, as a high-precision instrument for measuring single-cell mass, volume, and density using two resonators connected by a serpentine fluidic channel. The dual SMR designs considered herein demonstrate the critical role of channel geometry in ensuring proper mixing and damping of pressure fluctuations in microfluidic systems designed for precision measurement. We use the dual SMR to compare the physical properties of two well-known cancer cell lines: human lung cancer cell H1650 and mouse lymphoblastic leukemia cell line L1210.
doi_str_mv 10.1039/c3lc51022k
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3895367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762049518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-72f484dbac6a2b71685002deb9f6e0f41d34dc03fabfadc3d6db0c67851238333</originalsourceid><addsrcrecordid>eNqFkU1PGzEQhi0E4qu98AMqHxEi4K_1ri-VUFTaiqBe2lMPlteeJVu83uDZBeXfN2lCRE9cZkaaR69m3peQM86uOJPm2svoC86EeNwjx1yVcsJ4ZfZ3symPyAniH8Z4oXR1SI6EEkYbxo_J73twOOY2PVBclQjUQ4y0c4iX9LmPYweX1KVAAyRshyV9aYc5DaOLFEdcQAoQaNf63Pu5SwkizYB9ckOf8QM5aFxE-Ljtp-TX7Zef02-T2Y-v36c3s4lXhRgmpWhUpULtvHaiLrmuCsZEgNo0GlijeJAqeCYbVzcueBl0qJnXZVVwISsp5Sn5vNFdjHUHwUMasot2kdvO5aXtXWv_36R2bh_6ZysrU0hdrgTOtwK5fxoBB9u1uPbBJehHtLzUgilT8Op9VBlWKqH1Gr3YoCtzEDM0u4s4s-vg7FTOpv-Cu1vBn97-sENfk5J_AcO2laE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490742668</pqid></control><display><type>article</type><title>Measuring single cell mass, volume, and density with dual suspended microchannel resonators</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Bryan, Andrea K ; Hecht, Vivian C ; Shen, Wenjiang ; Payer, Kristofor ; Grover, William H ; Manalis, Scott R</creator><creatorcontrib>Bryan, Andrea K ; Hecht, Vivian C ; Shen, Wenjiang ; Payer, Kristofor ; Grover, William H ; Manalis, Scott R</creatorcontrib><description>Cell size, measured as either volume or mass, is a fundamental indicator of cell state. Far more tightly regulated than size is density, the ratio between mass and volume, which can be used to distinguish between cell populations even when volume and mass appear to remain constant. Here we expand upon a previous method for measuring cell density involving a suspended microchannel resonator (SMR). We introduce a new device, the dual SMR, as a high-precision instrument for measuring single-cell mass, volume, and density using two resonators connected by a serpentine fluidic channel. The dual SMR designs considered herein demonstrate the critical role of channel geometry in ensuring proper mixing and damping of pressure fluctuations in microfluidic systems designed for precision measurement. We use the dual SMR to compare the physical properties of two well-known cancer cell lines: human lung cancer cell H1650 and mouse lymphoblastic leukemia cell line L1210.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c3lc51022k</identifier><identifier>PMID: 24296901</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Biotechnology ; Cancer ; Cell Count ; Cell Line, Tumor ; Cell Size ; Channels ; Density ; Devices ; Humans ; Measuring instruments ; Mice ; Microchannels ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Povidone - chemistry ; Resonators ; Silicon Dioxide - chemistry</subject><ispartof>Lab on a chip, 2014-02, Vol.14 (3), p.569-576</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-72f484dbac6a2b71685002deb9f6e0f41d34dc03fabfadc3d6db0c67851238333</citedby><cites>FETCH-LOGICAL-c452t-72f484dbac6a2b71685002deb9f6e0f41d34dc03fabfadc3d6db0c67851238333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24296901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bryan, Andrea K</creatorcontrib><creatorcontrib>Hecht, Vivian C</creatorcontrib><creatorcontrib>Shen, Wenjiang</creatorcontrib><creatorcontrib>Payer, Kristofor</creatorcontrib><creatorcontrib>Grover, William H</creatorcontrib><creatorcontrib>Manalis, Scott R</creatorcontrib><title>Measuring single cell mass, volume, and density with dual suspended microchannel resonators</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Cell size, measured as either volume or mass, is a fundamental indicator of cell state. Far more tightly regulated than size is density, the ratio between mass and volume, which can be used to distinguish between cell populations even when volume and mass appear to remain constant. Here we expand upon a previous method for measuring cell density involving a suspended microchannel resonator (SMR). We introduce a new device, the dual SMR, as a high-precision instrument for measuring single-cell mass, volume, and density using two resonators connected by a serpentine fluidic channel. The dual SMR designs considered herein demonstrate the critical role of channel geometry in ensuring proper mixing and damping of pressure fluctuations in microfluidic systems designed for precision measurement. We use the dual SMR to compare the physical properties of two well-known cancer cell lines: human lung cancer cell H1650 and mouse lymphoblastic leukemia cell line L1210.</description><subject>Animals</subject><subject>Biotechnology</subject><subject>Cancer</subject><subject>Cell Count</subject><subject>Cell Line, Tumor</subject><subject>Cell Size</subject><subject>Channels</subject><subject>Density</subject><subject>Devices</subject><subject>Humans</subject><subject>Measuring instruments</subject><subject>Mice</subject><subject>Microchannels</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Povidone - chemistry</subject><subject>Resonators</subject><subject>Silicon Dioxide - chemistry</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1PGzEQhi0E4qu98AMqHxEi4K_1ri-VUFTaiqBe2lMPlteeJVu83uDZBeXfN2lCRE9cZkaaR69m3peQM86uOJPm2svoC86EeNwjx1yVcsJ4ZfZ3symPyAniH8Z4oXR1SI6EEkYbxo_J73twOOY2PVBclQjUQ4y0c4iX9LmPYweX1KVAAyRshyV9aYc5DaOLFEdcQAoQaNf63Pu5SwkizYB9ckOf8QM5aFxE-Ljtp-TX7Zef02-T2Y-v36c3s4lXhRgmpWhUpULtvHaiLrmuCsZEgNo0GlijeJAqeCYbVzcueBl0qJnXZVVwISsp5Sn5vNFdjHUHwUMasot2kdvO5aXtXWv_36R2bh_6ZysrU0hdrgTOtwK5fxoBB9u1uPbBJehHtLzUgilT8Op9VBlWKqH1Gr3YoCtzEDM0u4s4s-vg7FTOpv-Cu1vBn97-sENfk5J_AcO2laE</recordid><startdate>20140207</startdate><enddate>20140207</enddate><creator>Bryan, Andrea K</creator><creator>Hecht, Vivian C</creator><creator>Shen, Wenjiang</creator><creator>Payer, Kristofor</creator><creator>Grover, William H</creator><creator>Manalis, Scott R</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20140207</creationdate><title>Measuring single cell mass, volume, and density with dual suspended microchannel resonators</title><author>Bryan, Andrea K ; Hecht, Vivian C ; Shen, Wenjiang ; Payer, Kristofor ; Grover, William H ; Manalis, Scott R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-72f484dbac6a2b71685002deb9f6e0f41d34dc03fabfadc3d6db0c67851238333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biotechnology</topic><topic>Cancer</topic><topic>Cell Count</topic><topic>Cell Line, Tumor</topic><topic>Cell Size</topic><topic>Channels</topic><topic>Density</topic><topic>Devices</topic><topic>Humans</topic><topic>Measuring instruments</topic><topic>Mice</topic><topic>Microchannels</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Povidone - chemistry</topic><topic>Resonators</topic><topic>Silicon Dioxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bryan, Andrea K</creatorcontrib><creatorcontrib>Hecht, Vivian C</creatorcontrib><creatorcontrib>Shen, Wenjiang</creatorcontrib><creatorcontrib>Payer, Kristofor</creatorcontrib><creatorcontrib>Grover, William H</creatorcontrib><creatorcontrib>Manalis, Scott R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bryan, Andrea K</au><au>Hecht, Vivian C</au><au>Shen, Wenjiang</au><au>Payer, Kristofor</au><au>Grover, William H</au><au>Manalis, Scott R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring single cell mass, volume, and density with dual suspended microchannel resonators</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2014-02-07</date><risdate>2014</risdate><volume>14</volume><issue>3</issue><spage>569</spage><epage>576</epage><pages>569-576</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Cell size, measured as either volume or mass, is a fundamental indicator of cell state. Far more tightly regulated than size is density, the ratio between mass and volume, which can be used to distinguish between cell populations even when volume and mass appear to remain constant. Here we expand upon a previous method for measuring cell density involving a suspended microchannel resonator (SMR). We introduce a new device, the dual SMR, as a high-precision instrument for measuring single-cell mass, volume, and density using two resonators connected by a serpentine fluidic channel. The dual SMR designs considered herein demonstrate the critical role of channel geometry in ensuring proper mixing and damping of pressure fluctuations in microfluidic systems designed for precision measurement. We use the dual SMR to compare the physical properties of two well-known cancer cell lines: human lung cancer cell H1650 and mouse lymphoblastic leukemia cell line L1210.</abstract><cop>England</cop><pmid>24296901</pmid><doi>10.1039/c3lc51022k</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2014-02, Vol.14 (3), p.569-576
issn 1473-0197
1473-0189
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3895367
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Animals
Biotechnology
Cancer
Cell Count
Cell Line, Tumor
Cell Size
Channels
Density
Devices
Humans
Measuring instruments
Mice
Microchannels
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Povidone - chemistry
Resonators
Silicon Dioxide - chemistry
title Measuring single cell mass, volume, and density with dual suspended microchannel resonators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20single%20cell%20mass,%20volume,%20and%20density%20with%20dual%20suspended%20microchannel%20resonators&rft.jtitle=Lab%20on%20a%20chip&rft.au=Bryan,%20Andrea%20K&rft.date=2014-02-07&rft.volume=14&rft.issue=3&rft.spage=569&rft.epage=576&rft.pages=569-576&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c3lc51022k&rft_dat=%3Cproquest_pubme%3E1762049518%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490742668&rft_id=info:pmid/24296901&rfr_iscdi=true