Measuring single cell mass, volume, and density with dual suspended microchannel resonators
Cell size, measured as either volume or mass, is a fundamental indicator of cell state. Far more tightly regulated than size is density, the ratio between mass and volume, which can be used to distinguish between cell populations even when volume and mass appear to remain constant. Here we expand up...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2014-02, Vol.14 (3), p.569-576 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 576 |
---|---|
container_issue | 3 |
container_start_page | 569 |
container_title | Lab on a chip |
container_volume | 14 |
creator | Bryan, Andrea K Hecht, Vivian C Shen, Wenjiang Payer, Kristofor Grover, William H Manalis, Scott R |
description | Cell size, measured as either volume or mass, is a fundamental indicator of cell state. Far more tightly regulated than size is density, the ratio between mass and volume, which can be used to distinguish between cell populations even when volume and mass appear to remain constant. Here we expand upon a previous method for measuring cell density involving a suspended microchannel resonator (SMR). We introduce a new device, the dual SMR, as a high-precision instrument for measuring single-cell mass, volume, and density using two resonators connected by a serpentine fluidic channel. The dual SMR designs considered herein demonstrate the critical role of channel geometry in ensuring proper mixing and damping of pressure fluctuations in microfluidic systems designed for precision measurement. We use the dual SMR to compare the physical properties of two well-known cancer cell lines: human lung cancer cell H1650 and mouse lymphoblastic leukemia cell line L1210. |
doi_str_mv | 10.1039/c3lc51022k |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3895367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762049518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-72f484dbac6a2b71685002deb9f6e0f41d34dc03fabfadc3d6db0c67851238333</originalsourceid><addsrcrecordid>eNqFkU1PGzEQhi0E4qu98AMqHxEi4K_1ri-VUFTaiqBe2lMPlteeJVu83uDZBeXfN2lCRE9cZkaaR69m3peQM86uOJPm2svoC86EeNwjx1yVcsJ4ZfZ3symPyAniH8Z4oXR1SI6EEkYbxo_J73twOOY2PVBclQjUQ4y0c4iX9LmPYweX1KVAAyRshyV9aYc5DaOLFEdcQAoQaNf63Pu5SwkizYB9ckOf8QM5aFxE-Ljtp-TX7Zef02-T2Y-v36c3s4lXhRgmpWhUpULtvHaiLrmuCsZEgNo0GlijeJAqeCYbVzcueBl0qJnXZVVwISsp5Sn5vNFdjHUHwUMasot2kdvO5aXtXWv_36R2bh_6ZysrU0hdrgTOtwK5fxoBB9u1uPbBJehHtLzUgilT8Op9VBlWKqH1Gr3YoCtzEDM0u4s4s-vg7FTOpv-Cu1vBn97-sENfk5J_AcO2laE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490742668</pqid></control><display><type>article</type><title>Measuring single cell mass, volume, and density with dual suspended microchannel resonators</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Bryan, Andrea K ; Hecht, Vivian C ; Shen, Wenjiang ; Payer, Kristofor ; Grover, William H ; Manalis, Scott R</creator><creatorcontrib>Bryan, Andrea K ; Hecht, Vivian C ; Shen, Wenjiang ; Payer, Kristofor ; Grover, William H ; Manalis, Scott R</creatorcontrib><description>Cell size, measured as either volume or mass, is a fundamental indicator of cell state. Far more tightly regulated than size is density, the ratio between mass and volume, which can be used to distinguish between cell populations even when volume and mass appear to remain constant. Here we expand upon a previous method for measuring cell density involving a suspended microchannel resonator (SMR). We introduce a new device, the dual SMR, as a high-precision instrument for measuring single-cell mass, volume, and density using two resonators connected by a serpentine fluidic channel. The dual SMR designs considered herein demonstrate the critical role of channel geometry in ensuring proper mixing and damping of pressure fluctuations in microfluidic systems designed for precision measurement. We use the dual SMR to compare the physical properties of two well-known cancer cell lines: human lung cancer cell H1650 and mouse lymphoblastic leukemia cell line L1210.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c3lc51022k</identifier><identifier>PMID: 24296901</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Biotechnology ; Cancer ; Cell Count ; Cell Line, Tumor ; Cell Size ; Channels ; Density ; Devices ; Humans ; Measuring instruments ; Mice ; Microchannels ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Povidone - chemistry ; Resonators ; Silicon Dioxide - chemistry</subject><ispartof>Lab on a chip, 2014-02, Vol.14 (3), p.569-576</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-72f484dbac6a2b71685002deb9f6e0f41d34dc03fabfadc3d6db0c67851238333</citedby><cites>FETCH-LOGICAL-c452t-72f484dbac6a2b71685002deb9f6e0f41d34dc03fabfadc3d6db0c67851238333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24296901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bryan, Andrea K</creatorcontrib><creatorcontrib>Hecht, Vivian C</creatorcontrib><creatorcontrib>Shen, Wenjiang</creatorcontrib><creatorcontrib>Payer, Kristofor</creatorcontrib><creatorcontrib>Grover, William H</creatorcontrib><creatorcontrib>Manalis, Scott R</creatorcontrib><title>Measuring single cell mass, volume, and density with dual suspended microchannel resonators</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Cell size, measured as either volume or mass, is a fundamental indicator of cell state. Far more tightly regulated than size is density, the ratio between mass and volume, which can be used to distinguish between cell populations even when volume and mass appear to remain constant. Here we expand upon a previous method for measuring cell density involving a suspended microchannel resonator (SMR). We introduce a new device, the dual SMR, as a high-precision instrument for measuring single-cell mass, volume, and density using two resonators connected by a serpentine fluidic channel. The dual SMR designs considered herein demonstrate the critical role of channel geometry in ensuring proper mixing and damping of pressure fluctuations in microfluidic systems designed for precision measurement. We use the dual SMR to compare the physical properties of two well-known cancer cell lines: human lung cancer cell H1650 and mouse lymphoblastic leukemia cell line L1210.</description><subject>Animals</subject><subject>Biotechnology</subject><subject>Cancer</subject><subject>Cell Count</subject><subject>Cell Line, Tumor</subject><subject>Cell Size</subject><subject>Channels</subject><subject>Density</subject><subject>Devices</subject><subject>Humans</subject><subject>Measuring instruments</subject><subject>Mice</subject><subject>Microchannels</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Povidone - chemistry</subject><subject>Resonators</subject><subject>Silicon Dioxide - chemistry</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1PGzEQhi0E4qu98AMqHxEi4K_1ri-VUFTaiqBe2lMPlteeJVu83uDZBeXfN2lCRE9cZkaaR69m3peQM86uOJPm2svoC86EeNwjx1yVcsJ4ZfZ3symPyAniH8Z4oXR1SI6EEkYbxo_J73twOOY2PVBclQjUQ4y0c4iX9LmPYweX1KVAAyRshyV9aYc5DaOLFEdcQAoQaNf63Pu5SwkizYB9ckOf8QM5aFxE-Ljtp-TX7Zef02-T2Y-v36c3s4lXhRgmpWhUpULtvHaiLrmuCsZEgNo0GlijeJAqeCYbVzcueBl0qJnXZVVwISsp5Sn5vNFdjHUHwUMasot2kdvO5aXtXWv_36R2bh_6ZysrU0hdrgTOtwK5fxoBB9u1uPbBJehHtLzUgilT8Op9VBlWKqH1Gr3YoCtzEDM0u4s4s-vg7FTOpv-Cu1vBn97-sENfk5J_AcO2laE</recordid><startdate>20140207</startdate><enddate>20140207</enddate><creator>Bryan, Andrea K</creator><creator>Hecht, Vivian C</creator><creator>Shen, Wenjiang</creator><creator>Payer, Kristofor</creator><creator>Grover, William H</creator><creator>Manalis, Scott R</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20140207</creationdate><title>Measuring single cell mass, volume, and density with dual suspended microchannel resonators</title><author>Bryan, Andrea K ; Hecht, Vivian C ; Shen, Wenjiang ; Payer, Kristofor ; Grover, William H ; Manalis, Scott R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-72f484dbac6a2b71685002deb9f6e0f41d34dc03fabfadc3d6db0c67851238333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biotechnology</topic><topic>Cancer</topic><topic>Cell Count</topic><topic>Cell Line, Tumor</topic><topic>Cell Size</topic><topic>Channels</topic><topic>Density</topic><topic>Devices</topic><topic>Humans</topic><topic>Measuring instruments</topic><topic>Mice</topic><topic>Microchannels</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Povidone - chemistry</topic><topic>Resonators</topic><topic>Silicon Dioxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bryan, Andrea K</creatorcontrib><creatorcontrib>Hecht, Vivian C</creatorcontrib><creatorcontrib>Shen, Wenjiang</creatorcontrib><creatorcontrib>Payer, Kristofor</creatorcontrib><creatorcontrib>Grover, William H</creatorcontrib><creatorcontrib>Manalis, Scott R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bryan, Andrea K</au><au>Hecht, Vivian C</au><au>Shen, Wenjiang</au><au>Payer, Kristofor</au><au>Grover, William H</au><au>Manalis, Scott R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring single cell mass, volume, and density with dual suspended microchannel resonators</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2014-02-07</date><risdate>2014</risdate><volume>14</volume><issue>3</issue><spage>569</spage><epage>576</epage><pages>569-576</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Cell size, measured as either volume or mass, is a fundamental indicator of cell state. Far more tightly regulated than size is density, the ratio between mass and volume, which can be used to distinguish between cell populations even when volume and mass appear to remain constant. Here we expand upon a previous method for measuring cell density involving a suspended microchannel resonator (SMR). We introduce a new device, the dual SMR, as a high-precision instrument for measuring single-cell mass, volume, and density using two resonators connected by a serpentine fluidic channel. The dual SMR designs considered herein demonstrate the critical role of channel geometry in ensuring proper mixing and damping of pressure fluctuations in microfluidic systems designed for precision measurement. We use the dual SMR to compare the physical properties of two well-known cancer cell lines: human lung cancer cell H1650 and mouse lymphoblastic leukemia cell line L1210.</abstract><cop>England</cop><pmid>24296901</pmid><doi>10.1039/c3lc51022k</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2014-02, Vol.14 (3), p.569-576 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3895367 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Animals Biotechnology Cancer Cell Count Cell Line, Tumor Cell Size Channels Density Devices Humans Measuring instruments Mice Microchannels Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Povidone - chemistry Resonators Silicon Dioxide - chemistry |
title | Measuring single cell mass, volume, and density with dual suspended microchannel resonators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20single%20cell%20mass,%20volume,%20and%20density%20with%20dual%20suspended%20microchannel%20resonators&rft.jtitle=Lab%20on%20a%20chip&rft.au=Bryan,%20Andrea%20K&rft.date=2014-02-07&rft.volume=14&rft.issue=3&rft.spage=569&rft.epage=576&rft.pages=569-576&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c3lc51022k&rft_dat=%3Cproquest_pubme%3E1762049518%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490742668&rft_id=info:pmid/24296901&rfr_iscdi=true |