Machine Learning Approaches : From Theory to Application in Schizophrenia

In recent years, machine learning approaches have been successfully applied for analysis of neuroimaging data, to help in the context of disease diagnosis. We provide, in this paper, an overview of recent support vector machine-based methods developed and applied in psychiatric neuroimaging for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2013-01, Vol.2013 (2013), p.1-12
Hauptverfasser: Veronese, Elisa, Castellani, Umberto, Peruzzo, Denis, Bellani, Marcella, Brambilla, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2013
container_start_page 1
container_title Computational and mathematical methods in medicine
container_volume 2013
creator Veronese, Elisa
Castellani, Umberto
Peruzzo, Denis
Bellani, Marcella
Brambilla, Paolo
description In recent years, machine learning approaches have been successfully applied for analysis of neuroimaging data, to help in the context of disease diagnosis. We provide, in this paper, an overview of recent support vector machine-based methods developed and applied in psychiatric neuroimaging for the investigation of schizophrenia. In particular, we focus on the algorithms implemented by our group, which have been applied to classify subjects affected by schizophrenia and healthy controls, comparing them in terms of accuracy results with other recently published studies. First we give a description of the basic terminology used in pattern recognition and machine learning. Then we separately summarize and explain each study, highlighting the main features that characterize each method. Finally, as an outcome of the comparison of the results obtained applying the described different techniques, conclusions are drawn in order to understand how much automatic classification approaches can be considered a useful tool in understanding the biological underpinnings of schizophrenia. We then conclude by discussing the main implications achievable by the application of these methods into clinical practice.
doi_str_mv 10.1155/2013/867924
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3893837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1508680406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-3a26c85b09860a47f18431c6c2282c7b1289a4ce0068c329a87960f91b9ba4033</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWqsnz8oeRanma5OsB6GIH4WKByt4C9k0ayPbZE22Sv31pqwWPXnKkHnmneEB4ADBM4Ty_BxDRM4F4wWmG6CHOBUDxpHYXNfweQfsxvgKYY54jrbBDqZUFAySHhjdKz2zzmRjo4Kz7iUbNk3w6dPE7CK7CX6eTWbGh2XW-lWvtlq11rvMuuwxjX76ZhaMs2oPbFWqjmb_--2Dp5vrydXdYPxwO7oajgeaEtEOiMJMi7yEhWBQUV4hQQnSTGMssOYlwqJQVBsImdAEF0rwdGlVoLIoFYWE9MFll9ssyrmZauPaoGrZBDtXYSm9svJvx9mZfPHvkoiCCMJTwPF3QPBvCxNbObdRm7pWzvhFlCiHgglIIUvoaYfq4GMMplqvQVCu5MuVfNnJT_TR78vW7I_tBJx0QDI-VR_2n7TDDjYJMZVawzmkHGHyBWfilQU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1508680406</pqid></control><display><type>article</type><title>Machine Learning Approaches : From Theory to Application in Schizophrenia</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Veronese, Elisa ; Castellani, Umberto ; Peruzzo, Denis ; Bellani, Marcella ; Brambilla, Paolo</creator><contributor>Niu, Tianye</contributor><creatorcontrib>Veronese, Elisa ; Castellani, Umberto ; Peruzzo, Denis ; Bellani, Marcella ; Brambilla, Paolo ; Niu, Tianye</creatorcontrib><description>In recent years, machine learning approaches have been successfully applied for analysis of neuroimaging data, to help in the context of disease diagnosis. We provide, in this paper, an overview of recent support vector machine-based methods developed and applied in psychiatric neuroimaging for the investigation of schizophrenia. In particular, we focus on the algorithms implemented by our group, which have been applied to classify subjects affected by schizophrenia and healthy controls, comparing them in terms of accuracy results with other recently published studies. First we give a description of the basic terminology used in pattern recognition and machine learning. Then we separately summarize and explain each study, highlighting the main features that characterize each method. Finally, as an outcome of the comparison of the results obtained applying the described different techniques, conclusions are drawn in order to understand how much automatic classification approaches can be considered a useful tool in understanding the biological underpinnings of schizophrenia. We then conclude by discussing the main implications achievable by the application of these methods into clinical practice.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2013/867924</identifier><identifier>PMID: 24489603</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Algorithms ; Artificial Intelligence ; Brain - ultrastructure ; Humans ; Magnetic Resonance Imaging - methods ; Review ; Schizophrenia - pathology ; Support Vector Machine</subject><ispartof>Computational and mathematical methods in medicine, 2013-01, Vol.2013 (2013), p.1-12</ispartof><rights>Copyright © 2013 Elisa Veronese et al.</rights><rights>Copyright © 2013 Elisa Veronese et al. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-3a26c85b09860a47f18431c6c2282c7b1289a4ce0068c329a87960f91b9ba4033</citedby><cites>FETCH-LOGICAL-c438t-3a26c85b09860a47f18431c6c2282c7b1289a4ce0068c329a87960f91b9ba4033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893837/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893837/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24489603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Niu, Tianye</contributor><creatorcontrib>Veronese, Elisa</creatorcontrib><creatorcontrib>Castellani, Umberto</creatorcontrib><creatorcontrib>Peruzzo, Denis</creatorcontrib><creatorcontrib>Bellani, Marcella</creatorcontrib><creatorcontrib>Brambilla, Paolo</creatorcontrib><title>Machine Learning Approaches : From Theory to Application in Schizophrenia</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>In recent years, machine learning approaches have been successfully applied for analysis of neuroimaging data, to help in the context of disease diagnosis. We provide, in this paper, an overview of recent support vector machine-based methods developed and applied in psychiatric neuroimaging for the investigation of schizophrenia. In particular, we focus on the algorithms implemented by our group, which have been applied to classify subjects affected by schizophrenia and healthy controls, comparing them in terms of accuracy results with other recently published studies. First we give a description of the basic terminology used in pattern recognition and machine learning. Then we separately summarize and explain each study, highlighting the main features that characterize each method. Finally, as an outcome of the comparison of the results obtained applying the described different techniques, conclusions are drawn in order to understand how much automatic classification approaches can be considered a useful tool in understanding the biological underpinnings of schizophrenia. We then conclude by discussing the main implications achievable by the application of these methods into clinical practice.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Brain - ultrastructure</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Review</subject><subject>Schizophrenia - pathology</subject><subject>Support Vector Machine</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhoMoWqsnz8oeRanma5OsB6GIH4WKByt4C9k0ayPbZE22Sv31pqwWPXnKkHnmneEB4ADBM4Ty_BxDRM4F4wWmG6CHOBUDxpHYXNfweQfsxvgKYY54jrbBDqZUFAySHhjdKz2zzmRjo4Kz7iUbNk3w6dPE7CK7CX6eTWbGh2XW-lWvtlq11rvMuuwxjX76ZhaMs2oPbFWqjmb_--2Dp5vrydXdYPxwO7oajgeaEtEOiMJMi7yEhWBQUV4hQQnSTGMssOYlwqJQVBsImdAEF0rwdGlVoLIoFYWE9MFll9ssyrmZauPaoGrZBDtXYSm9svJvx9mZfPHvkoiCCMJTwPF3QPBvCxNbObdRm7pWzvhFlCiHgglIIUvoaYfq4GMMplqvQVCu5MuVfNnJT_TR78vW7I_tBJx0QDI-VR_2n7TDDjYJMZVawzmkHGHyBWfilQU</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Veronese, Elisa</creator><creator>Castellani, Umberto</creator><creator>Peruzzo, Denis</creator><creator>Bellani, Marcella</creator><creator>Brambilla, Paolo</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130101</creationdate><title>Machine Learning Approaches : From Theory to Application in Schizophrenia</title><author>Veronese, Elisa ; Castellani, Umberto ; Peruzzo, Denis ; Bellani, Marcella ; Brambilla, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-3a26c85b09860a47f18431c6c2282c7b1289a4ce0068c329a87960f91b9ba4033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Brain - ultrastructure</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Review</topic><topic>Schizophrenia - pathology</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veronese, Elisa</creatorcontrib><creatorcontrib>Castellani, Umberto</creatorcontrib><creatorcontrib>Peruzzo, Denis</creatorcontrib><creatorcontrib>Bellani, Marcella</creatorcontrib><creatorcontrib>Brambilla, Paolo</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veronese, Elisa</au><au>Castellani, Umberto</au><au>Peruzzo, Denis</au><au>Bellani, Marcella</au><au>Brambilla, Paolo</au><au>Niu, Tianye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Approaches : From Theory to Application in Schizophrenia</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>In recent years, machine learning approaches have been successfully applied for analysis of neuroimaging data, to help in the context of disease diagnosis. We provide, in this paper, an overview of recent support vector machine-based methods developed and applied in psychiatric neuroimaging for the investigation of schizophrenia. In particular, we focus on the algorithms implemented by our group, which have been applied to classify subjects affected by schizophrenia and healthy controls, comparing them in terms of accuracy results with other recently published studies. First we give a description of the basic terminology used in pattern recognition and machine learning. Then we separately summarize and explain each study, highlighting the main features that characterize each method. Finally, as an outcome of the comparison of the results obtained applying the described different techniques, conclusions are drawn in order to understand how much automatic classification approaches can be considered a useful tool in understanding the biological underpinnings of schizophrenia. We then conclude by discussing the main implications achievable by the application of these methods into clinical practice.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>24489603</pmid><doi>10.1155/2013/867924</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2013-01, Vol.2013 (2013), p.1-12
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3893837
source MEDLINE; Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects Algorithms
Artificial Intelligence
Brain - ultrastructure
Humans
Magnetic Resonance Imaging - methods
Review
Schizophrenia - pathology
Support Vector Machine
title Machine Learning Approaches : From Theory to Application in Schizophrenia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Approaches%20:%20From%20Theory%20to%20Application%20in%20Schizophrenia&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Veronese,%20Elisa&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2013/867924&rft_dat=%3Cproquest_pubme%3E1508680406%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1508680406&rft_id=info:pmid/24489603&rfr_iscdi=true