Machine Learning Approaches : From Theory to Application in Schizophrenia
In recent years, machine learning approaches have been successfully applied for analysis of neuroimaging data, to help in the context of disease diagnosis. We provide, in this paper, an overview of recent support vector machine-based methods developed and applied in psychiatric neuroimaging for the...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2013-01, Vol.2013 (2013), p.1-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 2013 |
container_start_page | 1 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2013 |
creator | Veronese, Elisa Castellani, Umberto Peruzzo, Denis Bellani, Marcella Brambilla, Paolo |
description | In recent years, machine learning approaches have been successfully applied for analysis of neuroimaging data, to help in the context of disease diagnosis. We provide, in this paper, an overview of recent support vector machine-based methods developed and applied in psychiatric neuroimaging for the investigation of schizophrenia. In particular, we focus on the algorithms implemented by our group, which have been applied to classify subjects affected by schizophrenia and healthy controls, comparing them in terms of accuracy results with other recently published studies. First we give a description of the basic terminology used in pattern recognition and machine learning. Then we separately summarize and explain each study, highlighting the main features that characterize each method. Finally, as an outcome of the comparison of the results obtained applying the described different techniques, conclusions are drawn in order to understand how much automatic classification approaches can be considered a useful tool in understanding the biological underpinnings of schizophrenia. We then conclude by discussing the main implications achievable by the application of these methods into clinical practice. |
doi_str_mv | 10.1155/2013/867924 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3893837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1508680406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-3a26c85b09860a47f18431c6c2282c7b1289a4ce0068c329a87960f91b9ba4033</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWqsnz8oeRanma5OsB6GIH4WKByt4C9k0ayPbZE22Sv31pqwWPXnKkHnmneEB4ADBM4Ty_BxDRM4F4wWmG6CHOBUDxpHYXNfweQfsxvgKYY54jrbBDqZUFAySHhjdKz2zzmRjo4Kz7iUbNk3w6dPE7CK7CX6eTWbGh2XW-lWvtlq11rvMuuwxjX76ZhaMs2oPbFWqjmb_--2Dp5vrydXdYPxwO7oajgeaEtEOiMJMi7yEhWBQUV4hQQnSTGMssOYlwqJQVBsImdAEF0rwdGlVoLIoFYWE9MFll9ssyrmZauPaoGrZBDtXYSm9svJvx9mZfPHvkoiCCMJTwPF3QPBvCxNbObdRm7pWzvhFlCiHgglIIUvoaYfq4GMMplqvQVCu5MuVfNnJT_TR78vW7I_tBJx0QDI-VR_2n7TDDjYJMZVawzmkHGHyBWfilQU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1508680406</pqid></control><display><type>article</type><title>Machine Learning Approaches : From Theory to Application in Schizophrenia</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Veronese, Elisa ; Castellani, Umberto ; Peruzzo, Denis ; Bellani, Marcella ; Brambilla, Paolo</creator><contributor>Niu, Tianye</contributor><creatorcontrib>Veronese, Elisa ; Castellani, Umberto ; Peruzzo, Denis ; Bellani, Marcella ; Brambilla, Paolo ; Niu, Tianye</creatorcontrib><description>In recent years, machine learning approaches have been successfully applied for analysis of neuroimaging data, to help in the context of disease diagnosis. We provide, in this paper, an overview of recent support vector machine-based methods developed and applied in psychiatric neuroimaging for the investigation of schizophrenia. In particular, we focus on the algorithms implemented by our group, which have been applied to classify subjects affected by schizophrenia and healthy controls, comparing them in terms of accuracy results with other recently published studies. First we give a description of the basic terminology used in pattern recognition and machine learning. Then we separately summarize and explain each study, highlighting the main features that characterize each method. Finally, as an outcome of the comparison of the results obtained applying the described different techniques, conclusions are drawn in order to understand how much automatic classification approaches can be considered a useful tool in understanding the biological underpinnings of schizophrenia. We then conclude by discussing the main implications achievable by the application of these methods into clinical practice.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2013/867924</identifier><identifier>PMID: 24489603</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Algorithms ; Artificial Intelligence ; Brain - ultrastructure ; Humans ; Magnetic Resonance Imaging - methods ; Review ; Schizophrenia - pathology ; Support Vector Machine</subject><ispartof>Computational and mathematical methods in medicine, 2013-01, Vol.2013 (2013), p.1-12</ispartof><rights>Copyright © 2013 Elisa Veronese et al.</rights><rights>Copyright © 2013 Elisa Veronese et al. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-3a26c85b09860a47f18431c6c2282c7b1289a4ce0068c329a87960f91b9ba4033</citedby><cites>FETCH-LOGICAL-c438t-3a26c85b09860a47f18431c6c2282c7b1289a4ce0068c329a87960f91b9ba4033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893837/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893837/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24489603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Niu, Tianye</contributor><creatorcontrib>Veronese, Elisa</creatorcontrib><creatorcontrib>Castellani, Umberto</creatorcontrib><creatorcontrib>Peruzzo, Denis</creatorcontrib><creatorcontrib>Bellani, Marcella</creatorcontrib><creatorcontrib>Brambilla, Paolo</creatorcontrib><title>Machine Learning Approaches : From Theory to Application in Schizophrenia</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>In recent years, machine learning approaches have been successfully applied for analysis of neuroimaging data, to help in the context of disease diagnosis. We provide, in this paper, an overview of recent support vector machine-based methods developed and applied in psychiatric neuroimaging for the investigation of schizophrenia. In particular, we focus on the algorithms implemented by our group, which have been applied to classify subjects affected by schizophrenia and healthy controls, comparing them in terms of accuracy results with other recently published studies. First we give a description of the basic terminology used in pattern recognition and machine learning. Then we separately summarize and explain each study, highlighting the main features that characterize each method. Finally, as an outcome of the comparison of the results obtained applying the described different techniques, conclusions are drawn in order to understand how much automatic classification approaches can be considered a useful tool in understanding the biological underpinnings of schizophrenia. We then conclude by discussing the main implications achievable by the application of these methods into clinical practice.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Brain - ultrastructure</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Review</subject><subject>Schizophrenia - pathology</subject><subject>Support Vector Machine</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhoMoWqsnz8oeRanma5OsB6GIH4WKByt4C9k0ayPbZE22Sv31pqwWPXnKkHnmneEB4ADBM4Ty_BxDRM4F4wWmG6CHOBUDxpHYXNfweQfsxvgKYY54jrbBDqZUFAySHhjdKz2zzmRjo4Kz7iUbNk3w6dPE7CK7CX6eTWbGh2XW-lWvtlq11rvMuuwxjX76ZhaMs2oPbFWqjmb_--2Dp5vrydXdYPxwO7oajgeaEtEOiMJMi7yEhWBQUV4hQQnSTGMssOYlwqJQVBsImdAEF0rwdGlVoLIoFYWE9MFll9ssyrmZauPaoGrZBDtXYSm9svJvx9mZfPHvkoiCCMJTwPF3QPBvCxNbObdRm7pWzvhFlCiHgglIIUvoaYfq4GMMplqvQVCu5MuVfNnJT_TR78vW7I_tBJx0QDI-VR_2n7TDDjYJMZVawzmkHGHyBWfilQU</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Veronese, Elisa</creator><creator>Castellani, Umberto</creator><creator>Peruzzo, Denis</creator><creator>Bellani, Marcella</creator><creator>Brambilla, Paolo</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130101</creationdate><title>Machine Learning Approaches : From Theory to Application in Schizophrenia</title><author>Veronese, Elisa ; Castellani, Umberto ; Peruzzo, Denis ; Bellani, Marcella ; Brambilla, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-3a26c85b09860a47f18431c6c2282c7b1289a4ce0068c329a87960f91b9ba4033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Brain - ultrastructure</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Review</topic><topic>Schizophrenia - pathology</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veronese, Elisa</creatorcontrib><creatorcontrib>Castellani, Umberto</creatorcontrib><creatorcontrib>Peruzzo, Denis</creatorcontrib><creatorcontrib>Bellani, Marcella</creatorcontrib><creatorcontrib>Brambilla, Paolo</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veronese, Elisa</au><au>Castellani, Umberto</au><au>Peruzzo, Denis</au><au>Bellani, Marcella</au><au>Brambilla, Paolo</au><au>Niu, Tianye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Approaches : From Theory to Application in Schizophrenia</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>In recent years, machine learning approaches have been successfully applied for analysis of neuroimaging data, to help in the context of disease diagnosis. We provide, in this paper, an overview of recent support vector machine-based methods developed and applied in psychiatric neuroimaging for the investigation of schizophrenia. In particular, we focus on the algorithms implemented by our group, which have been applied to classify subjects affected by schizophrenia and healthy controls, comparing them in terms of accuracy results with other recently published studies. First we give a description of the basic terminology used in pattern recognition and machine learning. Then we separately summarize and explain each study, highlighting the main features that characterize each method. Finally, as an outcome of the comparison of the results obtained applying the described different techniques, conclusions are drawn in order to understand how much automatic classification approaches can be considered a useful tool in understanding the biological underpinnings of schizophrenia. We then conclude by discussing the main implications achievable by the application of these methods into clinical practice.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>24489603</pmid><doi>10.1155/2013/867924</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2013-01, Vol.2013 (2013), p.1-12 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3893837 |
source | MEDLINE; Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Algorithms Artificial Intelligence Brain - ultrastructure Humans Magnetic Resonance Imaging - methods Review Schizophrenia - pathology Support Vector Machine |
title | Machine Learning Approaches : From Theory to Application in Schizophrenia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Approaches%20:%20From%20Theory%20to%20Application%20in%20Schizophrenia&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Veronese,%20Elisa&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2013/867924&rft_dat=%3Cproquest_pubme%3E1508680406%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1508680406&rft_id=info:pmid/24489603&rfr_iscdi=true |