Precuneus is a functional core of the default-mode network

Efforts to understand the functional architecture of the brain have consistently identified multiple overlapping large-scale neural networks that are observable across multiple states. Despite the ubiquity of these networks, it remains unclear how regions within these large-scale neural networks int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2014-01, Vol.34 (3), p.932-940
Hauptverfasser: Utevsky, Amanda V, Smith, David V, Huettel, Scott A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 940
container_issue 3
container_start_page 932
container_title The Journal of neuroscience
container_volume 34
creator Utevsky, Amanda V
Smith, David V
Huettel, Scott A
description Efforts to understand the functional architecture of the brain have consistently identified multiple overlapping large-scale neural networks that are observable across multiple states. Despite the ubiquity of these networks, it remains unclear how regions within these large-scale neural networks interact to orchestrate behavior. Here, we collected functional magnetic resonance imaging data from 188 human subjects who engaged in three cognitive tasks and a resting-state scan. Using multiple tasks and a large sample allowed us to use split-sample validations to test for replication of results. We parceled the task-rest pairs into functional networks using a probabilistic spatial independent components analysis. We examined changes in connectivity between task and rest states using dual-regression analysis, which quantifies voxelwise connectivity estimates for each network of interest while controlling for the influence of signals arising from other networks and artifacts. Our analyses revealed systematic state-dependent functional connectivity in one brain region: the precuneus. Specifically, task performance led to increased connectivity (compared to rest) between the precuneus and the left frontoparietal network (lFPN), whereas rest increased connectivity between the precuneus and the default-mode network (DMN). The absolute magnitude of this effect was greater for DMN, suggesting a heightened specialization for resting-state cognition. All results replicated within the two independent samples. Our results indicate that the precuneus plays a core role not only in DMN, but also more broadly through its engagement under a variety of processing states.
doi_str_mv 10.1523/jneurosci.4227-13.2014
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3891968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1490715277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-b35f576e582dda10002f393c44d5159636eece3ca8931bc80f84ce4f936850ca3</originalsourceid><addsrcrecordid>eNqFkU1PGzEQhq0KVELavxDtsZcNHn-uOSBVES0gRBAtZ8vxjpulm3Wwd6n679kIiNoTpzm8H5qZh5AZ0DlIxk8eOhxSzL6ZC8Z0CXzOKIgPZDKqpmSCwgGZUKZpqYQWR-Q45wdKqaagP5IjJgQHIWFCTm8T-mEsy0WTC1eEofN9EzvXFj4mLGIo-jUWNQY3tH25iTUWHfZ_Yvr9iRwG12b8_Dqn5P7b-c_FRXm9_H65-HpdeqlUX664DFIrlBWrawfjEixww70QtQRpFFeIHrl3leGw8hUNlfAoguGqktQ7PiVnL73bYbXB2mPXJ9fabWo2Lv210TX2f6Vr1vZXfLK8MmBUNRZ8eS1I8XHA3NtNkz22reswDtlCxbQBBcDftwpD9fhirUererH6kUNOGPYbAbU7Rvbq5vz-bvljcWl3jCxwu2M0Bmf_3rOPvUHhz_wYjwk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490715277</pqid></control><display><type>article</type><title>Precuneus is a functional core of the default-mode network</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Utevsky, Amanda V ; Smith, David V ; Huettel, Scott A</creator><creatorcontrib>Utevsky, Amanda V ; Smith, David V ; Huettel, Scott A</creatorcontrib><description>Efforts to understand the functional architecture of the brain have consistently identified multiple overlapping large-scale neural networks that are observable across multiple states. Despite the ubiquity of these networks, it remains unclear how regions within these large-scale neural networks interact to orchestrate behavior. Here, we collected functional magnetic resonance imaging data from 188 human subjects who engaged in three cognitive tasks and a resting-state scan. Using multiple tasks and a large sample allowed us to use split-sample validations to test for replication of results. We parceled the task-rest pairs into functional networks using a probabilistic spatial independent components analysis. We examined changes in connectivity between task and rest states using dual-regression analysis, which quantifies voxelwise connectivity estimates for each network of interest while controlling for the influence of signals arising from other networks and artifacts. Our analyses revealed systematic state-dependent functional connectivity in one brain region: the precuneus. Specifically, task performance led to increased connectivity (compared to rest) between the precuneus and the left frontoparietal network (lFPN), whereas rest increased connectivity between the precuneus and the default-mode network (DMN). The absolute magnitude of this effect was greater for DMN, suggesting a heightened specialization for resting-state cognition. All results replicated within the two independent samples. Our results indicate that the precuneus plays a core role not only in DMN, but also more broadly through its engagement under a variety of processing states.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.4227-13.2014</identifier><identifier>PMID: 24431451</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Attention - physiology ; Brain - physiology ; Brain Mapping - methods ; Female ; Humans ; Male ; Nerve Net - physiology ; Photic Stimulation - methods ; Psychomotor Performance - physiology ; Reaction Time - physiology ; Rest - physiology</subject><ispartof>The Journal of neuroscience, 2014-01, Vol.34 (3), p.932-940</ispartof><rights>Copyright © 2014 the authors 0270-6474/14/340932-09$15.00/0 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-b35f576e582dda10002f393c44d5159636eece3ca8931bc80f84ce4f936850ca3</citedby><cites>FETCH-LOGICAL-c566t-b35f576e582dda10002f393c44d5159636eece3ca8931bc80f84ce4f936850ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891968/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891968/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24431451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Utevsky, Amanda V</creatorcontrib><creatorcontrib>Smith, David V</creatorcontrib><creatorcontrib>Huettel, Scott A</creatorcontrib><title>Precuneus is a functional core of the default-mode network</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Efforts to understand the functional architecture of the brain have consistently identified multiple overlapping large-scale neural networks that are observable across multiple states. Despite the ubiquity of these networks, it remains unclear how regions within these large-scale neural networks interact to orchestrate behavior. Here, we collected functional magnetic resonance imaging data from 188 human subjects who engaged in three cognitive tasks and a resting-state scan. Using multiple tasks and a large sample allowed us to use split-sample validations to test for replication of results. We parceled the task-rest pairs into functional networks using a probabilistic spatial independent components analysis. We examined changes in connectivity between task and rest states using dual-regression analysis, which quantifies voxelwise connectivity estimates for each network of interest while controlling for the influence of signals arising from other networks and artifacts. Our analyses revealed systematic state-dependent functional connectivity in one brain region: the precuneus. Specifically, task performance led to increased connectivity (compared to rest) between the precuneus and the left frontoparietal network (lFPN), whereas rest increased connectivity between the precuneus and the default-mode network (DMN). The absolute magnitude of this effect was greater for DMN, suggesting a heightened specialization for resting-state cognition. All results replicated within the two independent samples. Our results indicate that the precuneus plays a core role not only in DMN, but also more broadly through its engagement under a variety of processing states.</description><subject>Attention - physiology</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Nerve Net - physiology</subject><subject>Photic Stimulation - methods</subject><subject>Psychomotor Performance - physiology</subject><subject>Reaction Time - physiology</subject><subject>Rest - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1PGzEQhq0KVELavxDtsZcNHn-uOSBVES0gRBAtZ8vxjpulm3Wwd6n679kIiNoTpzm8H5qZh5AZ0DlIxk8eOhxSzL6ZC8Z0CXzOKIgPZDKqpmSCwgGZUKZpqYQWR-Q45wdKqaagP5IjJgQHIWFCTm8T-mEsy0WTC1eEofN9EzvXFj4mLGIo-jUWNQY3tH25iTUWHfZ_Yvr9iRwG12b8_Dqn5P7b-c_FRXm9_H65-HpdeqlUX664DFIrlBWrawfjEixww70QtQRpFFeIHrl3leGw8hUNlfAoguGqktQ7PiVnL73bYbXB2mPXJ9fabWo2Lv210TX2f6Vr1vZXfLK8MmBUNRZ8eS1I8XHA3NtNkz22reswDtlCxbQBBcDftwpD9fhirUererH6kUNOGPYbAbU7Rvbq5vz-bvljcWl3jCxwu2M0Bmf_3rOPvUHhz_wYjwk</recordid><startdate>20140115</startdate><enddate>20140115</enddate><creator>Utevsky, Amanda V</creator><creator>Smith, David V</creator><creator>Huettel, Scott A</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20140115</creationdate><title>Precuneus is a functional core of the default-mode network</title><author>Utevsky, Amanda V ; Smith, David V ; Huettel, Scott A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-b35f576e582dda10002f393c44d5159636eece3ca8931bc80f84ce4f936850ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Attention - physiology</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Nerve Net - physiology</topic><topic>Photic Stimulation - methods</topic><topic>Psychomotor Performance - physiology</topic><topic>Reaction Time - physiology</topic><topic>Rest - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Utevsky, Amanda V</creatorcontrib><creatorcontrib>Smith, David V</creatorcontrib><creatorcontrib>Huettel, Scott A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Utevsky, Amanda V</au><au>Smith, David V</au><au>Huettel, Scott A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precuneus is a functional core of the default-mode network</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2014-01-15</date><risdate>2014</risdate><volume>34</volume><issue>3</issue><spage>932</spage><epage>940</epage><pages>932-940</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Efforts to understand the functional architecture of the brain have consistently identified multiple overlapping large-scale neural networks that are observable across multiple states. Despite the ubiquity of these networks, it remains unclear how regions within these large-scale neural networks interact to orchestrate behavior. Here, we collected functional magnetic resonance imaging data from 188 human subjects who engaged in three cognitive tasks and a resting-state scan. Using multiple tasks and a large sample allowed us to use split-sample validations to test for replication of results. We parceled the task-rest pairs into functional networks using a probabilistic spatial independent components analysis. We examined changes in connectivity between task and rest states using dual-regression analysis, which quantifies voxelwise connectivity estimates for each network of interest while controlling for the influence of signals arising from other networks and artifacts. Our analyses revealed systematic state-dependent functional connectivity in one brain region: the precuneus. Specifically, task performance led to increased connectivity (compared to rest) between the precuneus and the left frontoparietal network (lFPN), whereas rest increased connectivity between the precuneus and the default-mode network (DMN). The absolute magnitude of this effect was greater for DMN, suggesting a heightened specialization for resting-state cognition. All results replicated within the two independent samples. Our results indicate that the precuneus plays a core role not only in DMN, but also more broadly through its engagement under a variety of processing states.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>24431451</pmid><doi>10.1523/jneurosci.4227-13.2014</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2014-01, Vol.34 (3), p.932-940
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3891968
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Attention - physiology
Brain - physiology
Brain Mapping - methods
Female
Humans
Male
Nerve Net - physiology
Photic Stimulation - methods
Psychomotor Performance - physiology
Reaction Time - physiology
Rest - physiology
title Precuneus is a functional core of the default-mode network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A38%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precuneus%20is%20a%20functional%20core%20of%20the%20default-mode%20network&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Utevsky,%20Amanda%20V&rft.date=2014-01-15&rft.volume=34&rft.issue=3&rft.spage=932&rft.epage=940&rft.pages=932-940&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.4227-13.2014&rft_dat=%3Cproquest_pubme%3E1490715277%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490715277&rft_id=info:pmid/24431451&rfr_iscdi=true