Precuneus is a functional core of the default-mode network
Efforts to understand the functional architecture of the brain have consistently identified multiple overlapping large-scale neural networks that are observable across multiple states. Despite the ubiquity of these networks, it remains unclear how regions within these large-scale neural networks int...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2014-01, Vol.34 (3), p.932-940 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 940 |
---|---|
container_issue | 3 |
container_start_page | 932 |
container_title | The Journal of neuroscience |
container_volume | 34 |
creator | Utevsky, Amanda V Smith, David V Huettel, Scott A |
description | Efforts to understand the functional architecture of the brain have consistently identified multiple overlapping large-scale neural networks that are observable across multiple states. Despite the ubiquity of these networks, it remains unclear how regions within these large-scale neural networks interact to orchestrate behavior. Here, we collected functional magnetic resonance imaging data from 188 human subjects who engaged in three cognitive tasks and a resting-state scan. Using multiple tasks and a large sample allowed us to use split-sample validations to test for replication of results. We parceled the task-rest pairs into functional networks using a probabilistic spatial independent components analysis. We examined changes in connectivity between task and rest states using dual-regression analysis, which quantifies voxelwise connectivity estimates for each network of interest while controlling for the influence of signals arising from other networks and artifacts. Our analyses revealed systematic state-dependent functional connectivity in one brain region: the precuneus. Specifically, task performance led to increased connectivity (compared to rest) between the precuneus and the left frontoparietal network (lFPN), whereas rest increased connectivity between the precuneus and the default-mode network (DMN). The absolute magnitude of this effect was greater for DMN, suggesting a heightened specialization for resting-state cognition. All results replicated within the two independent samples. Our results indicate that the precuneus plays a core role not only in DMN, but also more broadly through its engagement under a variety of processing states. |
doi_str_mv | 10.1523/jneurosci.4227-13.2014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3891968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1490715277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-b35f576e582dda10002f393c44d5159636eece3ca8931bc80f84ce4f936850ca3</originalsourceid><addsrcrecordid>eNqFkU1PGzEQhq0KVELavxDtsZcNHn-uOSBVES0gRBAtZ8vxjpulm3Wwd6n679kIiNoTpzm8H5qZh5AZ0DlIxk8eOhxSzL6ZC8Z0CXzOKIgPZDKqpmSCwgGZUKZpqYQWR-Q45wdKqaagP5IjJgQHIWFCTm8T-mEsy0WTC1eEofN9EzvXFj4mLGIo-jUWNQY3tH25iTUWHfZ_Yvr9iRwG12b8_Dqn5P7b-c_FRXm9_H65-HpdeqlUX664DFIrlBWrawfjEixww70QtQRpFFeIHrl3leGw8hUNlfAoguGqktQ7PiVnL73bYbXB2mPXJ9fabWo2Lv210TX2f6Vr1vZXfLK8MmBUNRZ8eS1I8XHA3NtNkz22reswDtlCxbQBBcDftwpD9fhirUererH6kUNOGPYbAbU7Rvbq5vz-bvljcWl3jCxwu2M0Bmf_3rOPvUHhz_wYjwk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490715277</pqid></control><display><type>article</type><title>Precuneus is a functional core of the default-mode network</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Utevsky, Amanda V ; Smith, David V ; Huettel, Scott A</creator><creatorcontrib>Utevsky, Amanda V ; Smith, David V ; Huettel, Scott A</creatorcontrib><description>Efforts to understand the functional architecture of the brain have consistently identified multiple overlapping large-scale neural networks that are observable across multiple states. Despite the ubiquity of these networks, it remains unclear how regions within these large-scale neural networks interact to orchestrate behavior. Here, we collected functional magnetic resonance imaging data from 188 human subjects who engaged in three cognitive tasks and a resting-state scan. Using multiple tasks and a large sample allowed us to use split-sample validations to test for replication of results. We parceled the task-rest pairs into functional networks using a probabilistic spatial independent components analysis. We examined changes in connectivity between task and rest states using dual-regression analysis, which quantifies voxelwise connectivity estimates for each network of interest while controlling for the influence of signals arising from other networks and artifacts. Our analyses revealed systematic state-dependent functional connectivity in one brain region: the precuneus. Specifically, task performance led to increased connectivity (compared to rest) between the precuneus and the left frontoparietal network (lFPN), whereas rest increased connectivity between the precuneus and the default-mode network (DMN). The absolute magnitude of this effect was greater for DMN, suggesting a heightened specialization for resting-state cognition. All results replicated within the two independent samples. Our results indicate that the precuneus plays a core role not only in DMN, but also more broadly through its engagement under a variety of processing states.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.4227-13.2014</identifier><identifier>PMID: 24431451</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Attention - physiology ; Brain - physiology ; Brain Mapping - methods ; Female ; Humans ; Male ; Nerve Net - physiology ; Photic Stimulation - methods ; Psychomotor Performance - physiology ; Reaction Time - physiology ; Rest - physiology</subject><ispartof>The Journal of neuroscience, 2014-01, Vol.34 (3), p.932-940</ispartof><rights>Copyright © 2014 the authors 0270-6474/14/340932-09$15.00/0 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-b35f576e582dda10002f393c44d5159636eece3ca8931bc80f84ce4f936850ca3</citedby><cites>FETCH-LOGICAL-c566t-b35f576e582dda10002f393c44d5159636eece3ca8931bc80f84ce4f936850ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891968/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891968/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24431451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Utevsky, Amanda V</creatorcontrib><creatorcontrib>Smith, David V</creatorcontrib><creatorcontrib>Huettel, Scott A</creatorcontrib><title>Precuneus is a functional core of the default-mode network</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Efforts to understand the functional architecture of the brain have consistently identified multiple overlapping large-scale neural networks that are observable across multiple states. Despite the ubiquity of these networks, it remains unclear how regions within these large-scale neural networks interact to orchestrate behavior. Here, we collected functional magnetic resonance imaging data from 188 human subjects who engaged in three cognitive tasks and a resting-state scan. Using multiple tasks and a large sample allowed us to use split-sample validations to test for replication of results. We parceled the task-rest pairs into functional networks using a probabilistic spatial independent components analysis. We examined changes in connectivity between task and rest states using dual-regression analysis, which quantifies voxelwise connectivity estimates for each network of interest while controlling for the influence of signals arising from other networks and artifacts. Our analyses revealed systematic state-dependent functional connectivity in one brain region: the precuneus. Specifically, task performance led to increased connectivity (compared to rest) between the precuneus and the left frontoparietal network (lFPN), whereas rest increased connectivity between the precuneus and the default-mode network (DMN). The absolute magnitude of this effect was greater for DMN, suggesting a heightened specialization for resting-state cognition. All results replicated within the two independent samples. Our results indicate that the precuneus plays a core role not only in DMN, but also more broadly through its engagement under a variety of processing states.</description><subject>Attention - physiology</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Nerve Net - physiology</subject><subject>Photic Stimulation - methods</subject><subject>Psychomotor Performance - physiology</subject><subject>Reaction Time - physiology</subject><subject>Rest - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1PGzEQhq0KVELavxDtsZcNHn-uOSBVES0gRBAtZ8vxjpulm3Wwd6n679kIiNoTpzm8H5qZh5AZ0DlIxk8eOhxSzL6ZC8Z0CXzOKIgPZDKqpmSCwgGZUKZpqYQWR-Q45wdKqaagP5IjJgQHIWFCTm8T-mEsy0WTC1eEofN9EzvXFj4mLGIo-jUWNQY3tH25iTUWHfZ_Yvr9iRwG12b8_Dqn5P7b-c_FRXm9_H65-HpdeqlUX664DFIrlBWrawfjEixww70QtQRpFFeIHrl3leGw8hUNlfAoguGqktQ7PiVnL73bYbXB2mPXJ9fabWo2Lv210TX2f6Vr1vZXfLK8MmBUNRZ8eS1I8XHA3NtNkz22reswDtlCxbQBBcDftwpD9fhirUererH6kUNOGPYbAbU7Rvbq5vz-bvljcWl3jCxwu2M0Bmf_3rOPvUHhz_wYjwk</recordid><startdate>20140115</startdate><enddate>20140115</enddate><creator>Utevsky, Amanda V</creator><creator>Smith, David V</creator><creator>Huettel, Scott A</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20140115</creationdate><title>Precuneus is a functional core of the default-mode network</title><author>Utevsky, Amanda V ; Smith, David V ; Huettel, Scott A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-b35f576e582dda10002f393c44d5159636eece3ca8931bc80f84ce4f936850ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Attention - physiology</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Nerve Net - physiology</topic><topic>Photic Stimulation - methods</topic><topic>Psychomotor Performance - physiology</topic><topic>Reaction Time - physiology</topic><topic>Rest - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Utevsky, Amanda V</creatorcontrib><creatorcontrib>Smith, David V</creatorcontrib><creatorcontrib>Huettel, Scott A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Utevsky, Amanda V</au><au>Smith, David V</au><au>Huettel, Scott A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precuneus is a functional core of the default-mode network</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2014-01-15</date><risdate>2014</risdate><volume>34</volume><issue>3</issue><spage>932</spage><epage>940</epage><pages>932-940</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Efforts to understand the functional architecture of the brain have consistently identified multiple overlapping large-scale neural networks that are observable across multiple states. Despite the ubiquity of these networks, it remains unclear how regions within these large-scale neural networks interact to orchestrate behavior. Here, we collected functional magnetic resonance imaging data from 188 human subjects who engaged in three cognitive tasks and a resting-state scan. Using multiple tasks and a large sample allowed us to use split-sample validations to test for replication of results. We parceled the task-rest pairs into functional networks using a probabilistic spatial independent components analysis. We examined changes in connectivity between task and rest states using dual-regression analysis, which quantifies voxelwise connectivity estimates for each network of interest while controlling for the influence of signals arising from other networks and artifacts. Our analyses revealed systematic state-dependent functional connectivity in one brain region: the precuneus. Specifically, task performance led to increased connectivity (compared to rest) between the precuneus and the left frontoparietal network (lFPN), whereas rest increased connectivity between the precuneus and the default-mode network (DMN). The absolute magnitude of this effect was greater for DMN, suggesting a heightened specialization for resting-state cognition. All results replicated within the two independent samples. Our results indicate that the precuneus plays a core role not only in DMN, but also more broadly through its engagement under a variety of processing states.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>24431451</pmid><doi>10.1523/jneurosci.4227-13.2014</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2014-01, Vol.34 (3), p.932-940 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3891968 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Attention - physiology Brain - physiology Brain Mapping - methods Female Humans Male Nerve Net - physiology Photic Stimulation - methods Psychomotor Performance - physiology Reaction Time - physiology Rest - physiology |
title | Precuneus is a functional core of the default-mode network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A38%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precuneus%20is%20a%20functional%20core%20of%20the%20default-mode%20network&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Utevsky,%20Amanda%20V&rft.date=2014-01-15&rft.volume=34&rft.issue=3&rft.spage=932&rft.epage=940&rft.pages=932-940&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.4227-13.2014&rft_dat=%3Cproquest_pubme%3E1490715277%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490715277&rft_id=info:pmid/24431451&rfr_iscdi=true |