Age-dependence of the average and equivalent refractive indices of the crystalline lens
Lens average and equivalent refractive indices are required for purposes such as lens thickness estimation and optical modeling. We modeled the refractive index gradient as a power function of the normalized distance from lens center. Average index along the lens axis was estimated by integration. E...
Gespeichert in:
Veröffentlicht in: | Biomedical optics express 2014-01, Vol.5 (1), p.31-39 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39 |
---|---|
container_issue | 1 |
container_start_page | 31 |
container_title | Biomedical optics express |
container_volume | 5 |
creator | Charman, W Neil Atchison, David A |
description | Lens average and equivalent refractive indices are required for purposes such as lens thickness estimation and optical modeling. We modeled the refractive index gradient as a power function of the normalized distance from lens center. Average index along the lens axis was estimated by integration. Equivalent index was estimated by raytracing through a model eye to establish ocular refraction, and then backward raytracing to determine the constant refractive index yielding the same refraction. Assuming center and edge indices remained constant with age, at 1.415 and 1.37 respectively, average axial refractive index increased (1.408 to 1.411) and equivalent index decreased (1.425 to 1.420) with age increase from 20 to 70 years. These values agree well with experimental estimates based on different techniques, although the latter show considerable scatter. The simple model of index gradient gives reasonable estimates of average and equivalent lens indices, although refinements in modeling and measurements are required. |
doi_str_mv | 10.1364/BOE.5.000031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3891341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1492698372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-5416a916c38cbd5925e5341156f8fa3f7293ef6e78dd2974bcafb67eeb6b851a3</originalsourceid><addsrcrecordid>eNpVkUlrwzAQhUVpaUKaW8_Fxx7q1LI2-1JIQ7pAIJeWHoUsjxIVx04kx5B_X4UspLqMBn1685iH0D1ORphw-vw6n47YKAmH4CvUTzHjsUgydn1x76Gh9797hlKRkOwW9VJKOaeC9tHPeAFxCWuoS6g1RI2J2iVEqgOnFqHWZQSbre1UBXUbOTBO6dZ2ENm6tBr86YN2O9-qqrI1RAH1d-jGqMrD8FgH6Ptt-jX5iGfz98_JeBZrktE2ZhRzlWMeOl2ULE8ZMEJxsG4yo4gRaU7AcBBZWaa5oIVWpuACoOBFxrAiA_Ry0F1vixWUOrh0qpJrZ1fK7WSjrPz_UtulXDSdJFmOw6Qg8HgUcM1mC76VK-s1VJWqodl6iWme8jwjIg3o0wHVrvE-7OI8BidyH4cMcUgmD3EE_OHS2hk-LZ_8AewKhsM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492698372</pqid></control><display><type>article</type><title>Age-dependence of the average and equivalent refractive indices of the crystalline lens</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Charman, W Neil ; Atchison, David A</creator><creatorcontrib>Charman, W Neil ; Atchison, David A</creatorcontrib><description>Lens average and equivalent refractive indices are required for purposes such as lens thickness estimation and optical modeling. We modeled the refractive index gradient as a power function of the normalized distance from lens center. Average index along the lens axis was estimated by integration. Equivalent index was estimated by raytracing through a model eye to establish ocular refraction, and then backward raytracing to determine the constant refractive index yielding the same refraction. Assuming center and edge indices remained constant with age, at 1.415 and 1.37 respectively, average axial refractive index increased (1.408 to 1.411) and equivalent index decreased (1.425 to 1.420) with age increase from 20 to 70 years. These values agree well with experimental estimates based on different techniques, although the latter show considerable scatter. The simple model of index gradient gives reasonable estimates of average and equivalent lens indices, although refinements in modeling and measurements are required.</description><identifier>ISSN: 2156-7085</identifier><identifier>EISSN: 2156-7085</identifier><identifier>DOI: 10.1364/BOE.5.000031</identifier><identifier>PMID: 24466474</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Ophthalmology Applications</subject><ispartof>Biomedical optics express, 2014-01, Vol.5 (1), p.31-39</ispartof><rights>2013 Optical Society of America 2013 Optical Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-5416a916c38cbd5925e5341156f8fa3f7293ef6e78dd2974bcafb67eeb6b851a3</citedby><cites>FETCH-LOGICAL-c384t-5416a916c38cbd5925e5341156f8fa3f7293ef6e78dd2974bcafb67eeb6b851a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891341/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891341/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24466474$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Charman, W Neil</creatorcontrib><creatorcontrib>Atchison, David A</creatorcontrib><title>Age-dependence of the average and equivalent refractive indices of the crystalline lens</title><title>Biomedical optics express</title><addtitle>Biomed Opt Express</addtitle><description>Lens average and equivalent refractive indices are required for purposes such as lens thickness estimation and optical modeling. We modeled the refractive index gradient as a power function of the normalized distance from lens center. Average index along the lens axis was estimated by integration. Equivalent index was estimated by raytracing through a model eye to establish ocular refraction, and then backward raytracing to determine the constant refractive index yielding the same refraction. Assuming center and edge indices remained constant with age, at 1.415 and 1.37 respectively, average axial refractive index increased (1.408 to 1.411) and equivalent index decreased (1.425 to 1.420) with age increase from 20 to 70 years. These values agree well with experimental estimates based on different techniques, although the latter show considerable scatter. The simple model of index gradient gives reasonable estimates of average and equivalent lens indices, although refinements in modeling and measurements are required.</description><subject>Ophthalmology Applications</subject><issn>2156-7085</issn><issn>2156-7085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpVkUlrwzAQhUVpaUKaW8_Fxx7q1LI2-1JIQ7pAIJeWHoUsjxIVx04kx5B_X4UspLqMBn1685iH0D1ORphw-vw6n47YKAmH4CvUTzHjsUgydn1x76Gh9797hlKRkOwW9VJKOaeC9tHPeAFxCWuoS6g1RI2J2iVEqgOnFqHWZQSbre1UBXUbOTBO6dZ2ENm6tBr86YN2O9-qqrI1RAH1d-jGqMrD8FgH6Ptt-jX5iGfz98_JeBZrktE2ZhRzlWMeOl2ULE8ZMEJxsG4yo4gRaU7AcBBZWaa5oIVWpuACoOBFxrAiA_Ry0F1vixWUOrh0qpJrZ1fK7WSjrPz_UtulXDSdJFmOw6Qg8HgUcM1mC76VK-s1VJWqodl6iWme8jwjIg3o0wHVrvE-7OI8BidyH4cMcUgmD3EE_OHS2hk-LZ_8AewKhsM</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Charman, W Neil</creator><creator>Atchison, David A</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Age-dependence of the average and equivalent refractive indices of the crystalline lens</title><author>Charman, W Neil ; Atchison, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-5416a916c38cbd5925e5341156f8fa3f7293ef6e78dd2974bcafb67eeb6b851a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Ophthalmology Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charman, W Neil</creatorcontrib><creatorcontrib>Atchison, David A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charman, W Neil</au><au>Atchison, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Age-dependence of the average and equivalent refractive indices of the crystalline lens</atitle><jtitle>Biomedical optics express</jtitle><addtitle>Biomed Opt Express</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>31</spage><epage>39</epage><pages>31-39</pages><issn>2156-7085</issn><eissn>2156-7085</eissn><abstract>Lens average and equivalent refractive indices are required for purposes such as lens thickness estimation and optical modeling. We modeled the refractive index gradient as a power function of the normalized distance from lens center. Average index along the lens axis was estimated by integration. Equivalent index was estimated by raytracing through a model eye to establish ocular refraction, and then backward raytracing to determine the constant refractive index yielding the same refraction. Assuming center and edge indices remained constant with age, at 1.415 and 1.37 respectively, average axial refractive index increased (1.408 to 1.411) and equivalent index decreased (1.425 to 1.420) with age increase from 20 to 70 years. These values agree well with experimental estimates based on different techniques, although the latter show considerable scatter. The simple model of index gradient gives reasonable estimates of average and equivalent lens indices, although refinements in modeling and measurements are required.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>24466474</pmid><doi>10.1364/BOE.5.000031</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-7085 |
ispartof | Biomedical optics express, 2014-01, Vol.5 (1), p.31-39 |
issn | 2156-7085 2156-7085 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3891341 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Ophthalmology Applications |
title | Age-dependence of the average and equivalent refractive indices of the crystalline lens |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Age-dependence%20of%20the%20average%20and%20equivalent%20refractive%20indices%20of%20the%20crystalline%20lens&rft.jtitle=Biomedical%20optics%20express&rft.au=Charman,%20W%20Neil&rft.date=2014-01-01&rft.volume=5&rft.issue=1&rft.spage=31&rft.epage=39&rft.pages=31-39&rft.issn=2156-7085&rft.eissn=2156-7085&rft_id=info:doi/10.1364/BOE.5.000031&rft_dat=%3Cproquest_pubme%3E1492698372%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492698372&rft_id=info:pmid/24466474&rfr_iscdi=true |