Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface

Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2014-01, Vol.4 (1), p.3688-3688, Article 3688
Hauptverfasser: Nan, Tianxiang, Zhou, Ziyao, Liu, Ming, Yang, Xi, Gao, Yuan, Assaf, Badih A., Lin, Hwaider, Velu, Siddharth, Wang, Xinjun, Luo, Haosu, Chen, Jimmy, Akhtar, Saad, Hu, Edward, Rajiv, Rohit, Krishnan, Kavin, Sreedhar, Shalini, Heiman, Don, Howe, Brandon M., Brown, Gail J., Sun, Nian X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3688
container_issue 1
container_start_page 3688
container_title Scientific reports
container_volume 4
creator Nan, Tianxiang
Zhou, Ziyao
Liu, Ming
Yang, Xi
Gao, Yuan
Assaf, Badih A.
Lin, Hwaider
Velu, Siddharth
Wang, Xinjun
Luo, Haosu
Chen, Jimmy
Akhtar, Saad
Hu, Edward
Rajiv, Rohit
Krishnan, Kavin
Sreedhar, Shalini
Heiman, Don
Howe, Brandon M.
Brown, Gail J.
Sun, Nian X.
description Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni 0.79 Fe 0.21 /PMN-PT interface by using a Ni 0.79 Fe 0.21 /Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling.
doi_str_mv 10.1038/srep03688
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3891213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1490776349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-10dc13c9ae34d3eb8e4d6d4d8905c66015a71c15d67e95f78a1da6c5e0b8e9cb3</originalsourceid><addsrcrecordid>eNplkV1rFDEUhoMottRe-AdkwBsVxiaTzEduBCl-FGq7Qr0O2eTMbEom2SYZof_eU7Yua81NAuc573lzXkJeM_qRUT6c5QRbyrtheEaOGyrauuFN8_zgfUROc76leNpGCiZfkqNGCDZIxo7J3c9Fh-JGZ3RxMVRxrHJJ2oVKB1uZjU4TVCbWM1inC9hq1lOAEsGDKckZrC1b78JUYfPisbUuG-xeQZq19_H-bPXjql7dVC4USKM28Iq8GLXPcPp4n5BfX7_cnH-vL6-_XZx_vqxNS0WpGbWGcSM1cGE5rAcQtrPCDpK2pusoa3XPDGtt14Nsx37QzOrOtEARlWbNT8inne52WaN7AwHNebVNbtbpXkXt1L-V4DZqir8Vx800jKPAu0eBFO8WyEXNLhvwXgeIS1ZMSNr3HRcS0bdP0Nu4pIDfU7jnvpe86R8E3-8ok2LG2Ma9GUbVQ5ZqnyWybw7d78m_ySHwYQdkLIUJ0sHI_9T-AGh4qqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1897793273</pqid></control><display><type>article</type><title>Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Nan, Tianxiang ; Zhou, Ziyao ; Liu, Ming ; Yang, Xi ; Gao, Yuan ; Assaf, Badih A. ; Lin, Hwaider ; Velu, Siddharth ; Wang, Xinjun ; Luo, Haosu ; Chen, Jimmy ; Akhtar, Saad ; Hu, Edward ; Rajiv, Rohit ; Krishnan, Kavin ; Sreedhar, Shalini ; Heiman, Don ; Howe, Brandon M. ; Brown, Gail J. ; Sun, Nian X.</creator><creatorcontrib>Nan, Tianxiang ; Zhou, Ziyao ; Liu, Ming ; Yang, Xi ; Gao, Yuan ; Assaf, Badih A. ; Lin, Hwaider ; Velu, Siddharth ; Wang, Xinjun ; Luo, Haosu ; Chen, Jimmy ; Akhtar, Saad ; Hu, Edward ; Rajiv, Rohit ; Krishnan, Kavin ; Sreedhar, Shalini ; Heiman, Don ; Howe, Brandon M. ; Brown, Gail J. ; Sun, Nian X.</creatorcontrib><description>Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni 0.79 Fe 0.21 /PMN-PT interface by using a Ni 0.79 Fe 0.21 /Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep03688</identifier><identifier>PMID: 24418911</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/996 ; 639/301/119/997 ; Coexistence ; Electric fields ; High voltage ; Humanities and Social Sciences ; Magnetic fields ; Magnetism ; multidisciplinary ; Polarization ; Science ; Surface charge</subject><ispartof>Scientific reports, 2014-01, Vol.4 (1), p.3688-3688, Article 3688</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Jan 2014</rights><rights>Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-10dc13c9ae34d3eb8e4d6d4d8905c66015a71c15d67e95f78a1da6c5e0b8e9cb3</citedby><cites>FETCH-LOGICAL-c504t-10dc13c9ae34d3eb8e4d6d4d8905c66015a71c15d67e95f78a1da6c5e0b8e9cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891213/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891213/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24418911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nan, Tianxiang</creatorcontrib><creatorcontrib>Zhou, Ziyao</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Yang, Xi</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Assaf, Badih A.</creatorcontrib><creatorcontrib>Lin, Hwaider</creatorcontrib><creatorcontrib>Velu, Siddharth</creatorcontrib><creatorcontrib>Wang, Xinjun</creatorcontrib><creatorcontrib>Luo, Haosu</creatorcontrib><creatorcontrib>Chen, Jimmy</creatorcontrib><creatorcontrib>Akhtar, Saad</creatorcontrib><creatorcontrib>Hu, Edward</creatorcontrib><creatorcontrib>Rajiv, Rohit</creatorcontrib><creatorcontrib>Krishnan, Kavin</creatorcontrib><creatorcontrib>Sreedhar, Shalini</creatorcontrib><creatorcontrib>Heiman, Don</creatorcontrib><creatorcontrib>Howe, Brandon M.</creatorcontrib><creatorcontrib>Brown, Gail J.</creatorcontrib><creatorcontrib>Sun, Nian X.</creatorcontrib><title>Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni 0.79 Fe 0.21 /PMN-PT interface by using a Ni 0.79 Fe 0.21 /Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling.</description><subject>639/301/119/996</subject><subject>639/301/119/997</subject><subject>Coexistence</subject><subject>Electric fields</subject><subject>High voltage</subject><subject>Humanities and Social Sciences</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>multidisciplinary</subject><subject>Polarization</subject><subject>Science</subject><subject>Surface charge</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV1rFDEUhoMottRe-AdkwBsVxiaTzEduBCl-FGq7Qr0O2eTMbEom2SYZof_eU7Yua81NAuc573lzXkJeM_qRUT6c5QRbyrtheEaOGyrauuFN8_zgfUROc76leNpGCiZfkqNGCDZIxo7J3c9Fh-JGZ3RxMVRxrHJJ2oVKB1uZjU4TVCbWM1inC9hq1lOAEsGDKckZrC1b78JUYfPisbUuG-xeQZq19_H-bPXjql7dVC4USKM28Iq8GLXPcPp4n5BfX7_cnH-vL6-_XZx_vqxNS0WpGbWGcSM1cGE5rAcQtrPCDpK2pusoa3XPDGtt14Nsx37QzOrOtEARlWbNT8inne52WaN7AwHNebVNbtbpXkXt1L-V4DZqir8Vx800jKPAu0eBFO8WyEXNLhvwXgeIS1ZMSNr3HRcS0bdP0Nu4pIDfU7jnvpe86R8E3-8ok2LG2Ma9GUbVQ5ZqnyWybw7d78m_ySHwYQdkLIUJ0sHI_9T-AGh4qqQ</recordid><startdate>20140114</startdate><enddate>20140114</enddate><creator>Nan, Tianxiang</creator><creator>Zhou, Ziyao</creator><creator>Liu, Ming</creator><creator>Yang, Xi</creator><creator>Gao, Yuan</creator><creator>Assaf, Badih A.</creator><creator>Lin, Hwaider</creator><creator>Velu, Siddharth</creator><creator>Wang, Xinjun</creator><creator>Luo, Haosu</creator><creator>Chen, Jimmy</creator><creator>Akhtar, Saad</creator><creator>Hu, Edward</creator><creator>Rajiv, Rohit</creator><creator>Krishnan, Kavin</creator><creator>Sreedhar, Shalini</creator><creator>Heiman, Don</creator><creator>Howe, Brandon M.</creator><creator>Brown, Gail J.</creator><creator>Sun, Nian X.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140114</creationdate><title>Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface</title><author>Nan, Tianxiang ; Zhou, Ziyao ; Liu, Ming ; Yang, Xi ; Gao, Yuan ; Assaf, Badih A. ; Lin, Hwaider ; Velu, Siddharth ; Wang, Xinjun ; Luo, Haosu ; Chen, Jimmy ; Akhtar, Saad ; Hu, Edward ; Rajiv, Rohit ; Krishnan, Kavin ; Sreedhar, Shalini ; Heiman, Don ; Howe, Brandon M. ; Brown, Gail J. ; Sun, Nian X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-10dc13c9ae34d3eb8e4d6d4d8905c66015a71c15d67e95f78a1da6c5e0b8e9cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/119/996</topic><topic>639/301/119/997</topic><topic>Coexistence</topic><topic>Electric fields</topic><topic>High voltage</topic><topic>Humanities and Social Sciences</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>multidisciplinary</topic><topic>Polarization</topic><topic>Science</topic><topic>Surface charge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nan, Tianxiang</creatorcontrib><creatorcontrib>Zhou, Ziyao</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Yang, Xi</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Assaf, Badih A.</creatorcontrib><creatorcontrib>Lin, Hwaider</creatorcontrib><creatorcontrib>Velu, Siddharth</creatorcontrib><creatorcontrib>Wang, Xinjun</creatorcontrib><creatorcontrib>Luo, Haosu</creatorcontrib><creatorcontrib>Chen, Jimmy</creatorcontrib><creatorcontrib>Akhtar, Saad</creatorcontrib><creatorcontrib>Hu, Edward</creatorcontrib><creatorcontrib>Rajiv, Rohit</creatorcontrib><creatorcontrib>Krishnan, Kavin</creatorcontrib><creatorcontrib>Sreedhar, Shalini</creatorcontrib><creatorcontrib>Heiman, Don</creatorcontrib><creatorcontrib>Howe, Brandon M.</creatorcontrib><creatorcontrib>Brown, Gail J.</creatorcontrib><creatorcontrib>Sun, Nian X.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nan, Tianxiang</au><au>Zhou, Ziyao</au><au>Liu, Ming</au><au>Yang, Xi</au><au>Gao, Yuan</au><au>Assaf, Badih A.</au><au>Lin, Hwaider</au><au>Velu, Siddharth</au><au>Wang, Xinjun</au><au>Luo, Haosu</au><au>Chen, Jimmy</au><au>Akhtar, Saad</au><au>Hu, Edward</au><au>Rajiv, Rohit</au><au>Krishnan, Kavin</au><au>Sreedhar, Shalini</au><au>Heiman, Don</au><au>Howe, Brandon M.</au><au>Brown, Gail J.</au><au>Sun, Nian X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2014-01-14</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>3688</spage><epage>3688</epage><pages>3688-3688</pages><artnum>3688</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni 0.79 Fe 0.21 /PMN-PT interface by using a Ni 0.79 Fe 0.21 /Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24418911</pmid><doi>10.1038/srep03688</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2014-01, Vol.4 (1), p.3688-3688, Article 3688
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3891213
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 639/301/119/996
639/301/119/997
Coexistence
Electric fields
High voltage
Humanities and Social Sciences
Magnetic fields
Magnetism
multidisciplinary
Polarization
Science
Surface charge
title Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A02%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20strain%20and%20charge%20co-mediated%20magnetoelectric%20coupling%20on%20ultra-thin%20Permalloy/PMN-PT%20interface&rft.jtitle=Scientific%20reports&rft.au=Nan,%20Tianxiang&rft.date=2014-01-14&rft.volume=4&rft.issue=1&rft.spage=3688&rft.epage=3688&rft.pages=3688-3688&rft.artnum=3688&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep03688&rft_dat=%3Cproquest_pubme%3E1490776349%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1897793273&rft_id=info:pmid/24418911&rfr_iscdi=true