Complex Interactions Among Diet, Gastrointestinal Transit, and Gut Microbiota in Humanized Mice
Background & Aims Diet has major effects on the intestinal microbiota, but the exact mechanisms that alter complex microbial communities have been difficult to elucidate. In addition to the direct influence that diet exerts on microbes, changes in microbiota composition and function can alter ho...
Gespeichert in:
Veröffentlicht in: | Gastroenterology (New York, N.Y. 1943) N.Y. 1943), 2013-05, Vol.144 (5), p.967-977 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 977 |
---|---|
container_issue | 5 |
container_start_page | 967 |
container_title | Gastroenterology (New York, N.Y. 1943) |
container_volume | 144 |
creator | Kashyap, Purna C Marcobal, Angela Ursell, Luke K Larauche, Muriel Duboc, Henri Earle, Kristen A Sonnenburg, Erica D Ferreyra, Jessica A Higginbottom, Steven K Million, Mulugeta Tache, Yvette Pasricha, Pankaj J Knight, Rob Farrugia, Gianrico Sonnenburg, Justin L |
description | Background & Aims Diet has major effects on the intestinal microbiota, but the exact mechanisms that alter complex microbial communities have been difficult to elucidate. In addition to the direct influence that diet exerts on microbes, changes in microbiota composition and function can alter host functions such as gastrointestinal (GI) transit time, which in turn can further affect the microbiota. Methods We investigated the relationships among diet, GI motility, and the intestinal microbiota using mice that are germ-free (GF) or humanized (ex-GF mice colonized with human fecal microbiota). Results Analysis of gut motility revealed that humanized mice fed a standard polysaccharide-rich diet had faster GI transit and increased colonic contractility compared with GF mice. Humanized mice with faster transit due to administration of polyethylene glycol or a nonfermentable cellulose-based diet had similar changes in gut microbiota composition, indicating that diet can modify GI transit, which then affects the composition of the microbial community. However, altered transit in mice fed a diet of fermentable fructooligosaccharide indicates that diet can change gut microbial function, which can affect GI transit. Conclusions Based on studies in humanized mice, diet can affect GI transit through microbiota-dependent or microbiota-independent pathways, depending on the type of dietary change. The effect of the microbiota on transit largely depends on the amount and type (fermentable vs nonfermentable) of polysaccharides present in the diet. These results have implications for disorders that affect GI transit and gut microbial communities, including irritable bowel syndrome and inflammatory bowel disease. |
doi_str_mv | 10.1053/j.gastro.2013.01.047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3890323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0016508513001042</els_id><sourcerecordid>1338392721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-4ccefa50203b1ffd58fe55726ac7b864baf771df8743d585669651b28fd61a933</originalsourceid><addsrcrecordid>eNqFUk1v1DAQtRCILoV_gFCOHEgY23HivSBVW9hWKuJAOVuOM1m8JPZiOxXl1-OwpXxcOI3lN_Nm3rwh5DmFioLgr_fVTscUfMWA8gpoBXX7gKyoYLIEoOwhWeXQlAKkOCFPYtwDwJpL-picMM4lgKxXRG38dBjxW3HpEgZtkvUuFmeTd7vi3GJ6VWx_drEZjsk6PRbXQbtoM6JdX2znVLy3JvjO-qQL64qLedLOfsd--cen5NGgx4jP7uIp-fTu7fXmorz6sL3cnF2VRsg6lbUxOGgBDHhHh6EXckAhWtZo03ayqTs9tC3tB9nWPIOiadaNoB2TQ99Qveb8lLw58h7mbsLeoEtBj-oQ7KTDrfLaqr8RZz-rnb9RXK6Bs4Xg5R1B8F_nrFVNNhocR-3Qz1HRvDK-Zi2jObU-pmbZMQYc7ttQUIs3aq-O3qjFGwVUZW9y2Ys_R7wv-mXGbw2YF3VjMahoLDqDvQ1okuq9_V-HfwnMaJ01evyCtxj3fg7ZwKxFRaZAfVzuYzkPyvMLasZ_ADWbuEs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1338392721</pqid></control><display><type>article</type><title>Complex Interactions Among Diet, Gastrointestinal Transit, and Gut Microbiota in Humanized Mice</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><creator>Kashyap, Purna C ; Marcobal, Angela ; Ursell, Luke K ; Larauche, Muriel ; Duboc, Henri ; Earle, Kristen A ; Sonnenburg, Erica D ; Ferreyra, Jessica A ; Higginbottom, Steven K ; Million, Mulugeta ; Tache, Yvette ; Pasricha, Pankaj J ; Knight, Rob ; Farrugia, Gianrico ; Sonnenburg, Justin L</creator><creatorcontrib>Kashyap, Purna C ; Marcobal, Angela ; Ursell, Luke K ; Larauche, Muriel ; Duboc, Henri ; Earle, Kristen A ; Sonnenburg, Erica D ; Ferreyra, Jessica A ; Higginbottom, Steven K ; Million, Mulugeta ; Tache, Yvette ; Pasricha, Pankaj J ; Knight, Rob ; Farrugia, Gianrico ; Sonnenburg, Justin L</creatorcontrib><description>Background & Aims Diet has major effects on the intestinal microbiota, but the exact mechanisms that alter complex microbial communities have been difficult to elucidate. In addition to the direct influence that diet exerts on microbes, changes in microbiota composition and function can alter host functions such as gastrointestinal (GI) transit time, which in turn can further affect the microbiota. Methods We investigated the relationships among diet, GI motility, and the intestinal microbiota using mice that are germ-free (GF) or humanized (ex-GF mice colonized with human fecal microbiota). Results Analysis of gut motility revealed that humanized mice fed a standard polysaccharide-rich diet had faster GI transit and increased colonic contractility compared with GF mice. Humanized mice with faster transit due to administration of polyethylene glycol or a nonfermentable cellulose-based diet had similar changes in gut microbiota composition, indicating that diet can modify GI transit, which then affects the composition of the microbial community. However, altered transit in mice fed a diet of fermentable fructooligosaccharide indicates that diet can change gut microbial function, which can affect GI transit. Conclusions Based on studies in humanized mice, diet can affect GI transit through microbiota-dependent or microbiota-independent pathways, depending on the type of dietary change. The effect of the microbiota on transit largely depends on the amount and type (fermentable vs nonfermentable) of polysaccharides present in the diet. These results have implications for disorders that affect GI transit and gut microbial communities, including irritable bowel syndrome and inflammatory bowel disease.</description><identifier>ISSN: 0016-5085</identifier><identifier>EISSN: 1528-0012</identifier><identifier>DOI: 10.1053/j.gastro.2013.01.047</identifier><identifier>PMID: 23380084</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Bacteria - genetics ; Diet ; Dietary Carbohydrates ; DNA, Bacterial - analysis ; Energy Metabolism ; Gastroenterology and Hepatology ; Gastrointestinal Tract - metabolism ; Gastrointestinal Tract - microbiology ; Gastrointestinal Transit - physiology ; Germ-Free Life ; Metabolomics ; Metagenome ; Mice ; Microbiome ; Serotonin</subject><ispartof>Gastroenterology (New York, N.Y. 1943), 2013-05, Vol.144 (5), p.967-977</ispartof><rights>AGA Institute</rights><rights>2013 AGA Institute</rights><rights>Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.</rights><rights>2013 by the AGA Institute 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-4ccefa50203b1ffd58fe55726ac7b864baf771df8743d585669651b28fd61a933</citedby><cites>FETCH-LOGICAL-c584t-4ccefa50203b1ffd58fe55726ac7b864baf771df8743d585669651b28fd61a933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016508513001042$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23380084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kashyap, Purna C</creatorcontrib><creatorcontrib>Marcobal, Angela</creatorcontrib><creatorcontrib>Ursell, Luke K</creatorcontrib><creatorcontrib>Larauche, Muriel</creatorcontrib><creatorcontrib>Duboc, Henri</creatorcontrib><creatorcontrib>Earle, Kristen A</creatorcontrib><creatorcontrib>Sonnenburg, Erica D</creatorcontrib><creatorcontrib>Ferreyra, Jessica A</creatorcontrib><creatorcontrib>Higginbottom, Steven K</creatorcontrib><creatorcontrib>Million, Mulugeta</creatorcontrib><creatorcontrib>Tache, Yvette</creatorcontrib><creatorcontrib>Pasricha, Pankaj J</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><creatorcontrib>Farrugia, Gianrico</creatorcontrib><creatorcontrib>Sonnenburg, Justin L</creatorcontrib><title>Complex Interactions Among Diet, Gastrointestinal Transit, and Gut Microbiota in Humanized Mice</title><title>Gastroenterology (New York, N.Y. 1943)</title><addtitle>Gastroenterology</addtitle><description>Background & Aims Diet has major effects on the intestinal microbiota, but the exact mechanisms that alter complex microbial communities have been difficult to elucidate. In addition to the direct influence that diet exerts on microbes, changes in microbiota composition and function can alter host functions such as gastrointestinal (GI) transit time, which in turn can further affect the microbiota. Methods We investigated the relationships among diet, GI motility, and the intestinal microbiota using mice that are germ-free (GF) or humanized (ex-GF mice colonized with human fecal microbiota). Results Analysis of gut motility revealed that humanized mice fed a standard polysaccharide-rich diet had faster GI transit and increased colonic contractility compared with GF mice. Humanized mice with faster transit due to administration of polyethylene glycol or a nonfermentable cellulose-based diet had similar changes in gut microbiota composition, indicating that diet can modify GI transit, which then affects the composition of the microbial community. However, altered transit in mice fed a diet of fermentable fructooligosaccharide indicates that diet can change gut microbial function, which can affect GI transit. Conclusions Based on studies in humanized mice, diet can affect GI transit through microbiota-dependent or microbiota-independent pathways, depending on the type of dietary change. The effect of the microbiota on transit largely depends on the amount and type (fermentable vs nonfermentable) of polysaccharides present in the diet. These results have implications for disorders that affect GI transit and gut microbial communities, including irritable bowel syndrome and inflammatory bowel disease.</description><subject>Animals</subject><subject>Bacteria - genetics</subject><subject>Diet</subject><subject>Dietary Carbohydrates</subject><subject>DNA, Bacterial - analysis</subject><subject>Energy Metabolism</subject><subject>Gastroenterology and Hepatology</subject><subject>Gastrointestinal Tract - metabolism</subject><subject>Gastrointestinal Tract - microbiology</subject><subject>Gastrointestinal Transit - physiology</subject><subject>Germ-Free Life</subject><subject>Metabolomics</subject><subject>Metagenome</subject><subject>Mice</subject><subject>Microbiome</subject><subject>Serotonin</subject><issn>0016-5085</issn><issn>1528-0012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUk1v1DAQtRCILoV_gFCOHEgY23HivSBVW9hWKuJAOVuOM1m8JPZiOxXl1-OwpXxcOI3lN_Nm3rwh5DmFioLgr_fVTscUfMWA8gpoBXX7gKyoYLIEoOwhWeXQlAKkOCFPYtwDwJpL-picMM4lgKxXRG38dBjxW3HpEgZtkvUuFmeTd7vi3GJ6VWx_drEZjsk6PRbXQbtoM6JdX2znVLy3JvjO-qQL64qLedLOfsd--cen5NGgx4jP7uIp-fTu7fXmorz6sL3cnF2VRsg6lbUxOGgBDHhHh6EXckAhWtZo03ayqTs9tC3tB9nWPIOiadaNoB2TQ99Qveb8lLw58h7mbsLeoEtBj-oQ7KTDrfLaqr8RZz-rnb9RXK6Bs4Xg5R1B8F_nrFVNNhocR-3Qz1HRvDK-Zi2jObU-pmbZMQYc7ttQUIs3aq-O3qjFGwVUZW9y2Ys_R7wv-mXGbw2YF3VjMahoLDqDvQ1okuq9_V-HfwnMaJ01evyCtxj3fg7ZwKxFRaZAfVzuYzkPyvMLasZ_ADWbuEs</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Kashyap, Purna C</creator><creator>Marcobal, Angela</creator><creator>Ursell, Luke K</creator><creator>Larauche, Muriel</creator><creator>Duboc, Henri</creator><creator>Earle, Kristen A</creator><creator>Sonnenburg, Erica D</creator><creator>Ferreyra, Jessica A</creator><creator>Higginbottom, Steven K</creator><creator>Million, Mulugeta</creator><creator>Tache, Yvette</creator><creator>Pasricha, Pankaj J</creator><creator>Knight, Rob</creator><creator>Farrugia, Gianrico</creator><creator>Sonnenburg, Justin L</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130501</creationdate><title>Complex Interactions Among Diet, Gastrointestinal Transit, and Gut Microbiota in Humanized Mice</title><author>Kashyap, Purna C ; Marcobal, Angela ; Ursell, Luke K ; Larauche, Muriel ; Duboc, Henri ; Earle, Kristen A ; Sonnenburg, Erica D ; Ferreyra, Jessica A ; Higginbottom, Steven K ; Million, Mulugeta ; Tache, Yvette ; Pasricha, Pankaj J ; Knight, Rob ; Farrugia, Gianrico ; Sonnenburg, Justin L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-4ccefa50203b1ffd58fe55726ac7b864baf771df8743d585669651b28fd61a933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Bacteria - genetics</topic><topic>Diet</topic><topic>Dietary Carbohydrates</topic><topic>DNA, Bacterial - analysis</topic><topic>Energy Metabolism</topic><topic>Gastroenterology and Hepatology</topic><topic>Gastrointestinal Tract - metabolism</topic><topic>Gastrointestinal Tract - microbiology</topic><topic>Gastrointestinal Transit - physiology</topic><topic>Germ-Free Life</topic><topic>Metabolomics</topic><topic>Metagenome</topic><topic>Mice</topic><topic>Microbiome</topic><topic>Serotonin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kashyap, Purna C</creatorcontrib><creatorcontrib>Marcobal, Angela</creatorcontrib><creatorcontrib>Ursell, Luke K</creatorcontrib><creatorcontrib>Larauche, Muriel</creatorcontrib><creatorcontrib>Duboc, Henri</creatorcontrib><creatorcontrib>Earle, Kristen A</creatorcontrib><creatorcontrib>Sonnenburg, Erica D</creatorcontrib><creatorcontrib>Ferreyra, Jessica A</creatorcontrib><creatorcontrib>Higginbottom, Steven K</creatorcontrib><creatorcontrib>Million, Mulugeta</creatorcontrib><creatorcontrib>Tache, Yvette</creatorcontrib><creatorcontrib>Pasricha, Pankaj J</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><creatorcontrib>Farrugia, Gianrico</creatorcontrib><creatorcontrib>Sonnenburg, Justin L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gastroenterology (New York, N.Y. 1943)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kashyap, Purna C</au><au>Marcobal, Angela</au><au>Ursell, Luke K</au><au>Larauche, Muriel</au><au>Duboc, Henri</au><au>Earle, Kristen A</au><au>Sonnenburg, Erica D</au><au>Ferreyra, Jessica A</au><au>Higginbottom, Steven K</au><au>Million, Mulugeta</au><au>Tache, Yvette</au><au>Pasricha, Pankaj J</au><au>Knight, Rob</au><au>Farrugia, Gianrico</au><au>Sonnenburg, Justin L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex Interactions Among Diet, Gastrointestinal Transit, and Gut Microbiota in Humanized Mice</atitle><jtitle>Gastroenterology (New York, N.Y. 1943)</jtitle><addtitle>Gastroenterology</addtitle><date>2013-05-01</date><risdate>2013</risdate><volume>144</volume><issue>5</issue><spage>967</spage><epage>977</epage><pages>967-977</pages><issn>0016-5085</issn><eissn>1528-0012</eissn><abstract>Background & Aims Diet has major effects on the intestinal microbiota, but the exact mechanisms that alter complex microbial communities have been difficult to elucidate. In addition to the direct influence that diet exerts on microbes, changes in microbiota composition and function can alter host functions such as gastrointestinal (GI) transit time, which in turn can further affect the microbiota. Methods We investigated the relationships among diet, GI motility, and the intestinal microbiota using mice that are germ-free (GF) or humanized (ex-GF mice colonized with human fecal microbiota). Results Analysis of gut motility revealed that humanized mice fed a standard polysaccharide-rich diet had faster GI transit and increased colonic contractility compared with GF mice. Humanized mice with faster transit due to administration of polyethylene glycol or a nonfermentable cellulose-based diet had similar changes in gut microbiota composition, indicating that diet can modify GI transit, which then affects the composition of the microbial community. However, altered transit in mice fed a diet of fermentable fructooligosaccharide indicates that diet can change gut microbial function, which can affect GI transit. Conclusions Based on studies in humanized mice, diet can affect GI transit through microbiota-dependent or microbiota-independent pathways, depending on the type of dietary change. The effect of the microbiota on transit largely depends on the amount and type (fermentable vs nonfermentable) of polysaccharides present in the diet. These results have implications for disorders that affect GI transit and gut microbial communities, including irritable bowel syndrome and inflammatory bowel disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23380084</pmid><doi>10.1053/j.gastro.2013.01.047</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-5085 |
ispartof | Gastroenterology (New York, N.Y. 1943), 2013-05, Vol.144 (5), p.967-977 |
issn | 0016-5085 1528-0012 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3890323 |
source | MEDLINE; Elsevier ScienceDirect Journals; Alma/SFX Local Collection |
subjects | Animals Bacteria - genetics Diet Dietary Carbohydrates DNA, Bacterial - analysis Energy Metabolism Gastroenterology and Hepatology Gastrointestinal Tract - metabolism Gastrointestinal Tract - microbiology Gastrointestinal Transit - physiology Germ-Free Life Metabolomics Metagenome Mice Microbiome Serotonin |
title | Complex Interactions Among Diet, Gastrointestinal Transit, and Gut Microbiota in Humanized Mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20Interactions%20Among%20Diet,%20Gastrointestinal%20Transit,%20and%20Gut%20Microbiota%20in%20Humanized%20Mice&rft.jtitle=Gastroenterology%20(New%20York,%20N.Y.%201943)&rft.au=Kashyap,%20Purna%20C&rft.date=2013-05-01&rft.volume=144&rft.issue=5&rft.spage=967&rft.epage=977&rft.pages=967-977&rft.issn=0016-5085&rft.eissn=1528-0012&rft_id=info:doi/10.1053/j.gastro.2013.01.047&rft_dat=%3Cproquest_pubme%3E1338392721%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1338392721&rft_id=info:pmid/23380084&rft_els_id=1_s2_0_S0016508513001042&rfr_iscdi=true |