Observing Graphene Grow: Catalyst–Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper
Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of un...
Gespeichert in:
Veröffentlicht in: | Nano letters 2013-10, Vol.13 (10), p.4769-4778 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4778 |
---|---|
container_issue | 10 |
container_start_page | 4769 |
container_title | Nano letters |
container_volume | 13 |
creator | Kidambi, Piran R Bayer, Bernhard C Blume, Raoul Wang, Zhu-Jun Baehtz, Carsten Weatherup, Robert S Willinger, Marc-Georg Schloegl, Robert Hofmann, Stephan |
description | Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of understanding of the underlying fundamental growth mechanisms and catalyst interactions. Graphene forms directly on metallic Cu during the high-temperature hydrocarbon exposure, whereby an upshift in the binding energies of the corresponding C1s XPS core level signatures is indicative of coupling between the Cu catalyst and the growing graphene. Minor carbon uptake into Cu can under certain conditions manifest itself as carbon precipitation upon cooling. Postgrowth, ambient air exposure even at room temperature decouples the graphene from Cu by (reversible) oxygen intercalation. The importance of these dynamic interactions is discussed for graphene growth, processing, and device integration. |
doi_str_mv | 10.1021/nl4023572 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3883115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753483548</sourcerecordid><originalsourceid>FETCH-LOGICAL-a534t-916304c1c931a4982e4cb6397010359fbdfc9e592ff18442037f8a2dfeab83a83</originalsourceid><addsrcrecordid>eNptkc9KHEEQxpsQibrmkBcIcwnEw2r_m5nuHISwGLMgKGjOTU1vtzvS2z3pnlH25jv4hnmS9OI6Kniqgu9X31dUIfSF4COCKTn2jmPKypp-QHukZHhaSUk_jr3gu2g_pVuMsWQl_oR2KcecMEL2ULpokol3rb8pziJ0S-NNbsL9j2IGPbh16v89PI7K3Pcmgu7b4FOxGOJm7EqDg8aZt_P9sgi-uAxurWM2AefarMxC15l4gHYsuGQ-b-sE_fl1ej37PT2_OJvPfp5PoWS8n0pSMcw10ZIR4FJQw3VTMVljglkpbbOwWppSUmuJ4JxiVlsBdGENNIKBYBN08uTbDc3KLLTxfQSnutiuIK5VgFa9VXy7VDfhTjEh8nHKbPB9axDD38GkXq3apI1z4E0YkiJ1XlSwkm-yDp9QHUNK0dgxhmC1eZIan5TZr6_3Gsnnr2Tg2xaAlK9rI3jdpheuFhVmtHrhQCd1G4bo8znfCfwPV8ioXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753483548</pqid></control><display><type>article</type><title>Observing Graphene Grow: Catalyst–Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper</title><source>MEDLINE</source><source>ACS Publications</source><creator>Kidambi, Piran R ; Bayer, Bernhard C ; Blume, Raoul ; Wang, Zhu-Jun ; Baehtz, Carsten ; Weatherup, Robert S ; Willinger, Marc-Georg ; Schloegl, Robert ; Hofmann, Stephan</creator><creatorcontrib>Kidambi, Piran R ; Bayer, Bernhard C ; Blume, Raoul ; Wang, Zhu-Jun ; Baehtz, Carsten ; Weatherup, Robert S ; Willinger, Marc-Georg ; Schloegl, Robert ; Hofmann, Stephan</creatorcontrib><description>Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of understanding of the underlying fundamental growth mechanisms and catalyst interactions. Graphene forms directly on metallic Cu during the high-temperature hydrocarbon exposure, whereby an upshift in the binding energies of the corresponding C1s XPS core level signatures is indicative of coupling between the Cu catalyst and the growing graphene. Minor carbon uptake into Cu can under certain conditions manifest itself as carbon precipitation upon cooling. Postgrowth, ambient air exposure even at room temperature decouples the graphene from Cu by (reversible) oxygen intercalation. The importance of these dynamic interactions is discussed for graphene growth, processing, and device integration.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl4023572</identifier><identifier>PMID: 24041311</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Carbon ; Carbon - chemistry ; Catalysis ; Catalysts ; Catalytic methods ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Copper ; Copper - chemistry ; Cross-disciplinary physics: materials science; rheology ; Crystallization ; Exact sciences and technology ; Exposure ; Fullerenes and related materials; diamonds, graphite ; Graphene ; Graphite - chemistry ; Letter ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Methods of nanofabrication ; Nanostructures - chemistry ; Oxygen - chemistry ; Photoelectron Spectroscopy ; Physics ; Specific materials ; Surface Properties ; X-ray photoelectron spectroscopy ; X-rays</subject><ispartof>Nano letters, 2013-10, Vol.13 (10), p.4769-4778</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 American Chemical Society 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a534t-916304c1c931a4982e4cb6397010359fbdfc9e592ff18442037f8a2dfeab83a83</citedby><cites>FETCH-LOGICAL-a534t-916304c1c931a4982e4cb6397010359fbdfc9e592ff18442037f8a2dfeab83a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl4023572$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl4023572$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27860326$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24041311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kidambi, Piran R</creatorcontrib><creatorcontrib>Bayer, Bernhard C</creatorcontrib><creatorcontrib>Blume, Raoul</creatorcontrib><creatorcontrib>Wang, Zhu-Jun</creatorcontrib><creatorcontrib>Baehtz, Carsten</creatorcontrib><creatorcontrib>Weatherup, Robert S</creatorcontrib><creatorcontrib>Willinger, Marc-Georg</creatorcontrib><creatorcontrib>Schloegl, Robert</creatorcontrib><creatorcontrib>Hofmann, Stephan</creatorcontrib><title>Observing Graphene Grow: Catalyst–Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of understanding of the underlying fundamental growth mechanisms and catalyst interactions. Graphene forms directly on metallic Cu during the high-temperature hydrocarbon exposure, whereby an upshift in the binding energies of the corresponding C1s XPS core level signatures is indicative of coupling between the Cu catalyst and the growing graphene. Minor carbon uptake into Cu can under certain conditions manifest itself as carbon precipitation upon cooling. Postgrowth, ambient air exposure even at room temperature decouples the graphene from Cu by (reversible) oxygen intercalation. The importance of these dynamic interactions is discussed for graphene growth, processing, and device integration.</description><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic methods</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization</subject><subject>Exact sciences and technology</subject><subject>Exposure</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Letter</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Methods of nanofabrication</subject><subject>Nanostructures - chemistry</subject><subject>Oxygen - chemistry</subject><subject>Photoelectron Spectroscopy</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Surface Properties</subject><subject>X-ray photoelectron spectroscopy</subject><subject>X-rays</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNptkc9KHEEQxpsQibrmkBcIcwnEw2r_m5nuHISwGLMgKGjOTU1vtzvS2z3pnlH25jv4hnmS9OI6Kniqgu9X31dUIfSF4COCKTn2jmPKypp-QHukZHhaSUk_jr3gu2g_pVuMsWQl_oR2KcecMEL2ULpokol3rb8pziJ0S-NNbsL9j2IGPbh16v89PI7K3Pcmgu7b4FOxGOJm7EqDg8aZt_P9sgi-uAxurWM2AefarMxC15l4gHYsuGQ-b-sE_fl1ej37PT2_OJvPfp5PoWS8n0pSMcw10ZIR4FJQw3VTMVljglkpbbOwWppSUmuJ4JxiVlsBdGENNIKBYBN08uTbDc3KLLTxfQSnutiuIK5VgFa9VXy7VDfhTjEh8nHKbPB9axDD38GkXq3apI1z4E0YkiJ1XlSwkm-yDp9QHUNK0dgxhmC1eZIan5TZr6_3Gsnnr2Tg2xaAlK9rI3jdpheuFhVmtHrhQCd1G4bo8znfCfwPV8ioXA</recordid><startdate>20131009</startdate><enddate>20131009</enddate><creator>Kidambi, Piran R</creator><creator>Bayer, Bernhard C</creator><creator>Blume, Raoul</creator><creator>Wang, Zhu-Jun</creator><creator>Baehtz, Carsten</creator><creator>Weatherup, Robert S</creator><creator>Willinger, Marc-Georg</creator><creator>Schloegl, Robert</creator><creator>Hofmann, Stephan</creator><general>American Chemical Society</general><scope>N~.</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20131009</creationdate><title>Observing Graphene Grow: Catalyst–Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper</title><author>Kidambi, Piran R ; Bayer, Bernhard C ; Blume, Raoul ; Wang, Zhu-Jun ; Baehtz, Carsten ; Weatherup, Robert S ; Willinger, Marc-Georg ; Schloegl, Robert ; Hofmann, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a534t-916304c1c931a4982e4cb6397010359fbdfc9e592ff18442037f8a2dfeab83a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic methods</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization</topic><topic>Exact sciences and technology</topic><topic>Exposure</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Letter</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Methods of nanofabrication</topic><topic>Nanostructures - chemistry</topic><topic>Oxygen - chemistry</topic><topic>Photoelectron Spectroscopy</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Surface Properties</topic><topic>X-ray photoelectron spectroscopy</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kidambi, Piran R</creatorcontrib><creatorcontrib>Bayer, Bernhard C</creatorcontrib><creatorcontrib>Blume, Raoul</creatorcontrib><creatorcontrib>Wang, Zhu-Jun</creatorcontrib><creatorcontrib>Baehtz, Carsten</creatorcontrib><creatorcontrib>Weatherup, Robert S</creatorcontrib><creatorcontrib>Willinger, Marc-Georg</creatorcontrib><creatorcontrib>Schloegl, Robert</creatorcontrib><creatorcontrib>Hofmann, Stephan</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kidambi, Piran R</au><au>Bayer, Bernhard C</au><au>Blume, Raoul</au><au>Wang, Zhu-Jun</au><au>Baehtz, Carsten</au><au>Weatherup, Robert S</au><au>Willinger, Marc-Georg</au><au>Schloegl, Robert</au><au>Hofmann, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observing Graphene Grow: Catalyst–Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2013-10-09</date><risdate>2013</risdate><volume>13</volume><issue>10</issue><spage>4769</spage><epage>4778</epage><pages>4769-4778</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of understanding of the underlying fundamental growth mechanisms and catalyst interactions. Graphene forms directly on metallic Cu during the high-temperature hydrocarbon exposure, whereby an upshift in the binding energies of the corresponding C1s XPS core level signatures is indicative of coupling between the Cu catalyst and the growing graphene. Minor carbon uptake into Cu can under certain conditions manifest itself as carbon precipitation upon cooling. Postgrowth, ambient air exposure even at room temperature decouples the graphene from Cu by (reversible) oxygen intercalation. The importance of these dynamic interactions is discussed for graphene growth, processing, and device integration.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24041311</pmid><doi>10.1021/nl4023572</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2013-10, Vol.13 (10), p.4769-4778 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3883115 |
source | MEDLINE; ACS Publications |
subjects | Carbon Carbon - chemistry Catalysis Catalysts Catalytic methods Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) Copper Copper - chemistry Cross-disciplinary physics: materials science rheology Crystallization Exact sciences and technology Exposure Fullerenes and related materials diamonds, graphite Graphene Graphite - chemistry Letter Materials science Methods of deposition of films and coatings film growth and epitaxy Methods of nanofabrication Nanostructures - chemistry Oxygen - chemistry Photoelectron Spectroscopy Physics Specific materials Surface Properties X-ray photoelectron spectroscopy X-rays |
title | Observing Graphene Grow: Catalyst–Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observing%20Graphene%20Grow:%20Catalyst%E2%80%93Graphene%20Interactions%20during%20Scalable%20Graphene%20Growth%20on%20Polycrystalline%20Copper&rft.jtitle=Nano%20letters&rft.au=Kidambi,%20Piran%20R&rft.date=2013-10-09&rft.volume=13&rft.issue=10&rft.spage=4769&rft.epage=4778&rft.pages=4769-4778&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl4023572&rft_dat=%3Cproquest_pubme%3E1753483548%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753483548&rft_id=info:pmid/24041311&rfr_iscdi=true |