Observing Graphene Grow: Catalyst–Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper

Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2013-10, Vol.13 (10), p.4769-4778
Hauptverfasser: Kidambi, Piran R, Bayer, Bernhard C, Blume, Raoul, Wang, Zhu-Jun, Baehtz, Carsten, Weatherup, Robert S, Willinger, Marc-Georg, Schloegl, Robert, Hofmann, Stephan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4778
container_issue 10
container_start_page 4769
container_title Nano letters
container_volume 13
creator Kidambi, Piran R
Bayer, Bernhard C
Blume, Raoul
Wang, Zhu-Jun
Baehtz, Carsten
Weatherup, Robert S
Willinger, Marc-Georg
Schloegl, Robert
Hofmann, Stephan
description Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of understanding of the underlying fundamental growth mechanisms and catalyst interactions. Graphene forms directly on metallic Cu during the high-temperature hydrocarbon exposure, whereby an upshift in the binding energies of the corresponding C1s XPS core level signatures is indicative of coupling between the Cu catalyst and the growing graphene. Minor carbon uptake into Cu can under certain conditions manifest itself as carbon precipitation upon cooling. Postgrowth, ambient air exposure even at room temperature decouples the graphene from Cu by (reversible) oxygen intercalation. The importance of these dynamic interactions is discussed for graphene growth, processing, and device integration.
doi_str_mv 10.1021/nl4023572
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3883115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753483548</sourcerecordid><originalsourceid>FETCH-LOGICAL-a534t-916304c1c931a4982e4cb6397010359fbdfc9e592ff18442037f8a2dfeab83a83</originalsourceid><addsrcrecordid>eNptkc9KHEEQxpsQibrmkBcIcwnEw2r_m5nuHISwGLMgKGjOTU1vtzvS2z3pnlH25jv4hnmS9OI6Kniqgu9X31dUIfSF4COCKTn2jmPKypp-QHukZHhaSUk_jr3gu2g_pVuMsWQl_oR2KcecMEL2ULpokol3rb8pziJ0S-NNbsL9j2IGPbh16v89PI7K3Pcmgu7b4FOxGOJm7EqDg8aZt_P9sgi-uAxurWM2AefarMxC15l4gHYsuGQ-b-sE_fl1ej37PT2_OJvPfp5PoWS8n0pSMcw10ZIR4FJQw3VTMVljglkpbbOwWppSUmuJ4JxiVlsBdGENNIKBYBN08uTbDc3KLLTxfQSnutiuIK5VgFa9VXy7VDfhTjEh8nHKbPB9axDD38GkXq3apI1z4E0YkiJ1XlSwkm-yDp9QHUNK0dgxhmC1eZIan5TZr6_3Gsnnr2Tg2xaAlK9rI3jdpheuFhVmtHrhQCd1G4bo8znfCfwPV8ioXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753483548</pqid></control><display><type>article</type><title>Observing Graphene Grow: Catalyst–Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper</title><source>MEDLINE</source><source>ACS Publications</source><creator>Kidambi, Piran R ; Bayer, Bernhard C ; Blume, Raoul ; Wang, Zhu-Jun ; Baehtz, Carsten ; Weatherup, Robert S ; Willinger, Marc-Georg ; Schloegl, Robert ; Hofmann, Stephan</creator><creatorcontrib>Kidambi, Piran R ; Bayer, Bernhard C ; Blume, Raoul ; Wang, Zhu-Jun ; Baehtz, Carsten ; Weatherup, Robert S ; Willinger, Marc-Georg ; Schloegl, Robert ; Hofmann, Stephan</creatorcontrib><description>Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of understanding of the underlying fundamental growth mechanisms and catalyst interactions. Graphene forms directly on metallic Cu during the high-temperature hydrocarbon exposure, whereby an upshift in the binding energies of the corresponding C1s XPS core level signatures is indicative of coupling between the Cu catalyst and the growing graphene. Minor carbon uptake into Cu can under certain conditions manifest itself as carbon precipitation upon cooling. Postgrowth, ambient air exposure even at room temperature decouples the graphene from Cu by (reversible) oxygen intercalation. The importance of these dynamic interactions is discussed for graphene growth, processing, and device integration.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl4023572</identifier><identifier>PMID: 24041311</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Carbon ; Carbon - chemistry ; Catalysis ; Catalysts ; Catalytic methods ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Copper ; Copper - chemistry ; Cross-disciplinary physics: materials science; rheology ; Crystallization ; Exact sciences and technology ; Exposure ; Fullerenes and related materials; diamonds, graphite ; Graphene ; Graphite - chemistry ; Letter ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Methods of nanofabrication ; Nanostructures - chemistry ; Oxygen - chemistry ; Photoelectron Spectroscopy ; Physics ; Specific materials ; Surface Properties ; X-ray photoelectron spectroscopy ; X-rays</subject><ispartof>Nano letters, 2013-10, Vol.13 (10), p.4769-4778</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 American Chemical Society 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a534t-916304c1c931a4982e4cb6397010359fbdfc9e592ff18442037f8a2dfeab83a83</citedby><cites>FETCH-LOGICAL-a534t-916304c1c931a4982e4cb6397010359fbdfc9e592ff18442037f8a2dfeab83a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl4023572$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl4023572$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27860326$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24041311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kidambi, Piran R</creatorcontrib><creatorcontrib>Bayer, Bernhard C</creatorcontrib><creatorcontrib>Blume, Raoul</creatorcontrib><creatorcontrib>Wang, Zhu-Jun</creatorcontrib><creatorcontrib>Baehtz, Carsten</creatorcontrib><creatorcontrib>Weatherup, Robert S</creatorcontrib><creatorcontrib>Willinger, Marc-Georg</creatorcontrib><creatorcontrib>Schloegl, Robert</creatorcontrib><creatorcontrib>Hofmann, Stephan</creatorcontrib><title>Observing Graphene Grow: Catalyst–Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of understanding of the underlying fundamental growth mechanisms and catalyst interactions. Graphene forms directly on metallic Cu during the high-temperature hydrocarbon exposure, whereby an upshift in the binding energies of the corresponding C1s XPS core level signatures is indicative of coupling between the Cu catalyst and the growing graphene. Minor carbon uptake into Cu can under certain conditions manifest itself as carbon precipitation upon cooling. Postgrowth, ambient air exposure even at room temperature decouples the graphene from Cu by (reversible) oxygen intercalation. The importance of these dynamic interactions is discussed for graphene growth, processing, and device integration.</description><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic methods</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization</subject><subject>Exact sciences and technology</subject><subject>Exposure</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Letter</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Methods of nanofabrication</subject><subject>Nanostructures - chemistry</subject><subject>Oxygen - chemistry</subject><subject>Photoelectron Spectroscopy</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Surface Properties</subject><subject>X-ray photoelectron spectroscopy</subject><subject>X-rays</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNptkc9KHEEQxpsQibrmkBcIcwnEw2r_m5nuHISwGLMgKGjOTU1vtzvS2z3pnlH25jv4hnmS9OI6Kniqgu9X31dUIfSF4COCKTn2jmPKypp-QHukZHhaSUk_jr3gu2g_pVuMsWQl_oR2KcecMEL2ULpokol3rb8pziJ0S-NNbsL9j2IGPbh16v89PI7K3Pcmgu7b4FOxGOJm7EqDg8aZt_P9sgi-uAxurWM2AefarMxC15l4gHYsuGQ-b-sE_fl1ej37PT2_OJvPfp5PoWS8n0pSMcw10ZIR4FJQw3VTMVljglkpbbOwWppSUmuJ4JxiVlsBdGENNIKBYBN08uTbDc3KLLTxfQSnutiuIK5VgFa9VXy7VDfhTjEh8nHKbPB9axDD38GkXq3apI1z4E0YkiJ1XlSwkm-yDp9QHUNK0dgxhmC1eZIan5TZr6_3Gsnnr2Tg2xaAlK9rI3jdpheuFhVmtHrhQCd1G4bo8znfCfwPV8ioXA</recordid><startdate>20131009</startdate><enddate>20131009</enddate><creator>Kidambi, Piran R</creator><creator>Bayer, Bernhard C</creator><creator>Blume, Raoul</creator><creator>Wang, Zhu-Jun</creator><creator>Baehtz, Carsten</creator><creator>Weatherup, Robert S</creator><creator>Willinger, Marc-Georg</creator><creator>Schloegl, Robert</creator><creator>Hofmann, Stephan</creator><general>American Chemical Society</general><scope>N~.</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20131009</creationdate><title>Observing Graphene Grow: Catalyst–Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper</title><author>Kidambi, Piran R ; Bayer, Bernhard C ; Blume, Raoul ; Wang, Zhu-Jun ; Baehtz, Carsten ; Weatherup, Robert S ; Willinger, Marc-Georg ; Schloegl, Robert ; Hofmann, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a534t-916304c1c931a4982e4cb6397010359fbdfc9e592ff18442037f8a2dfeab83a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic methods</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization</topic><topic>Exact sciences and technology</topic><topic>Exposure</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Letter</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Methods of nanofabrication</topic><topic>Nanostructures - chemistry</topic><topic>Oxygen - chemistry</topic><topic>Photoelectron Spectroscopy</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Surface Properties</topic><topic>X-ray photoelectron spectroscopy</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kidambi, Piran R</creatorcontrib><creatorcontrib>Bayer, Bernhard C</creatorcontrib><creatorcontrib>Blume, Raoul</creatorcontrib><creatorcontrib>Wang, Zhu-Jun</creatorcontrib><creatorcontrib>Baehtz, Carsten</creatorcontrib><creatorcontrib>Weatherup, Robert S</creatorcontrib><creatorcontrib>Willinger, Marc-Georg</creatorcontrib><creatorcontrib>Schloegl, Robert</creatorcontrib><creatorcontrib>Hofmann, Stephan</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kidambi, Piran R</au><au>Bayer, Bernhard C</au><au>Blume, Raoul</au><au>Wang, Zhu-Jun</au><au>Baehtz, Carsten</au><au>Weatherup, Robert S</au><au>Willinger, Marc-Georg</au><au>Schloegl, Robert</au><au>Hofmann, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observing Graphene Grow: Catalyst–Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2013-10-09</date><risdate>2013</risdate><volume>13</volume><issue>10</issue><spage>4769</spage><epage>4778</epage><pages>4769-4778</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of understanding of the underlying fundamental growth mechanisms and catalyst interactions. Graphene forms directly on metallic Cu during the high-temperature hydrocarbon exposure, whereby an upshift in the binding energies of the corresponding C1s XPS core level signatures is indicative of coupling between the Cu catalyst and the growing graphene. Minor carbon uptake into Cu can under certain conditions manifest itself as carbon precipitation upon cooling. Postgrowth, ambient air exposure even at room temperature decouples the graphene from Cu by (reversible) oxygen intercalation. The importance of these dynamic interactions is discussed for graphene growth, processing, and device integration.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24041311</pmid><doi>10.1021/nl4023572</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2013-10, Vol.13 (10), p.4769-4778
issn 1530-6984
1530-6992
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3883115
source MEDLINE; ACS Publications
subjects Carbon
Carbon - chemistry
Catalysis
Catalysts
Catalytic methods
Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
Copper
Copper - chemistry
Cross-disciplinary physics: materials science
rheology
Crystallization
Exact sciences and technology
Exposure
Fullerenes and related materials
diamonds, graphite
Graphene
Graphite - chemistry
Letter
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Methods of nanofabrication
Nanostructures - chemistry
Oxygen - chemistry
Photoelectron Spectroscopy
Physics
Specific materials
Surface Properties
X-ray photoelectron spectroscopy
X-rays
title Observing Graphene Grow: Catalyst–Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observing%20Graphene%20Grow:%20Catalyst%E2%80%93Graphene%20Interactions%20during%20Scalable%20Graphene%20Growth%20on%20Polycrystalline%20Copper&rft.jtitle=Nano%20letters&rft.au=Kidambi,%20Piran%20R&rft.date=2013-10-09&rft.volume=13&rft.issue=10&rft.spage=4769&rft.epage=4778&rft.pages=4769-4778&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl4023572&rft_dat=%3Cproquest_pubme%3E1753483548%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753483548&rft_id=info:pmid/24041311&rfr_iscdi=true