The Histone H3 Methyltransferase G9A Epigenetically Activates the Serine-Glycine Synthesis Pathway to Sustain Cancer Cell Survival and Proliferation

Increased activation of the serine-glycine biosynthetic pathway is an integral part of cancer metabolism that drives macromolecule synthesis needed for cell proliferation. Whether this pathway is under epigenetic control is unknown. Here we show that the histone H3 lysine 9 (H3K9) methyltransferase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell metabolism 2013-12, Vol.18 (6), p.896-907
Hauptverfasser: Ding, Jane, Li, Tai, Wang, Xiangwei, Zhao, Erhu, Choi, Jeong-Hyeon, Yang, Liqun, Zha, Yunhong, Dong, Zheng, Huang, Shuang, Asara, John M., Cui, Hongjuan, Ding, Han-Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 907
container_issue 6
container_start_page 896
container_title Cell metabolism
container_volume 18
creator Ding, Jane
Li, Tai
Wang, Xiangwei
Zhao, Erhu
Choi, Jeong-Hyeon
Yang, Liqun
Zha, Yunhong
Dong, Zheng
Huang, Shuang
Asara, John M.
Cui, Hongjuan
Ding, Han-Fei
description Increased activation of the serine-glycine biosynthetic pathway is an integral part of cancer metabolism that drives macromolecule synthesis needed for cell proliferation. Whether this pathway is under epigenetic control is unknown. Here we show that the histone H3 lysine 9 (H3K9) methyltransferase G9A is required for maintaining the pathway enzyme genes in an active state marked by H3K9 monomethylation and for the transcriptional activation of this pathway in response to serine deprivation. G9A inactivation depletes serine and its downstream metabolites, triggering cell death with autophagy in cancer cell lines of different tissue origins. Higher G9A expression, which is observed in various cancers and is associated with greater mortality in cancer patients, increases serine production and enhances the proliferation and tumorigenicity of cancer cells. These findings identify a G9A-dependent epigenetic program in the control of cancer metabolism, providing a rationale for G9A inhibition as a therapeutic strategy for cancer. [Display omitted] •G9A sustains cancer cell survival and proliferation•G9A epigenetically activates the serine-glycine biosynthetic pathway•G9A links serine sensing to ribosome biogenesis and cell-cycle progression•G9A has an oncogenic function in tumorigenesis
doi_str_mv 10.1016/j.cmet.2013.11.004
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3878056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1550413113004531</els_id><sourcerecordid>24315373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-9dca70419906ff0bb147a139dc19ebbae0cd0b70765a0e674a56145ed9daf2e33</originalsourceid><addsrcrecordid>eNp9Udtq3DAQNaWlubQ_0IeiH7A7Y_kSQyksS7oJpDSw6bMYy-OsFq28SMoG_0c_uFq2De1Ln85wZs4ZZk6WfUAoELD5tC30jmNRAsoCsQCoXmXn2Mkyb6sSXqe6riGvUOJZdhHCFkA2spNvs7OykljLVp5nPx82LG5MiJNLKMU3jpvZRk8ujOwpsFh1C3G9N4_sOBpN1s5ioaM5UOQgYlKv2RvH-crOOqFYzy6xwQRxT3HzTLOIk1g_hUjGiSU5zV4s2drE-UOysYLcIO79ZM1xYzSTe5e9GckGfv8bL7MfX68fljf53ffV7XJxl-u6xJh3g6YWKuw6aMYR-h6rllAmGjvue2LQA_QttE1NwE1bUd1gVfPQDTSWLOVl9uXku3_qdzxodulwq_be7MjPaiKj_u04s1GP00HJq_YK6iYZlCcD7acQPI8vWgR1zEht1TEjdcxIIaqUURJ9_Hvri-RPKGng82mA0-0Hw14FbTg9bjCedVTDZP7n_wszgKdj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Histone H3 Methyltransferase G9A Epigenetically Activates the Serine-Glycine Synthesis Pathway to Sustain Cancer Cell Survival and Proliferation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ding, Jane ; Li, Tai ; Wang, Xiangwei ; Zhao, Erhu ; Choi, Jeong-Hyeon ; Yang, Liqun ; Zha, Yunhong ; Dong, Zheng ; Huang, Shuang ; Asara, John M. ; Cui, Hongjuan ; Ding, Han-Fei</creator><creatorcontrib>Ding, Jane ; Li, Tai ; Wang, Xiangwei ; Zhao, Erhu ; Choi, Jeong-Hyeon ; Yang, Liqun ; Zha, Yunhong ; Dong, Zheng ; Huang, Shuang ; Asara, John M. ; Cui, Hongjuan ; Ding, Han-Fei</creatorcontrib><description>Increased activation of the serine-glycine biosynthetic pathway is an integral part of cancer metabolism that drives macromolecule synthesis needed for cell proliferation. Whether this pathway is under epigenetic control is unknown. Here we show that the histone H3 lysine 9 (H3K9) methyltransferase G9A is required for maintaining the pathway enzyme genes in an active state marked by H3K9 monomethylation and for the transcriptional activation of this pathway in response to serine deprivation. G9A inactivation depletes serine and its downstream metabolites, triggering cell death with autophagy in cancer cell lines of different tissue origins. Higher G9A expression, which is observed in various cancers and is associated with greater mortality in cancer patients, increases serine production and enhances the proliferation and tumorigenicity of cancer cells. These findings identify a G9A-dependent epigenetic program in the control of cancer metabolism, providing a rationale for G9A inhibition as a therapeutic strategy for cancer. [Display omitted] •G9A sustains cancer cell survival and proliferation•G9A epigenetically activates the serine-glycine biosynthetic pathway•G9A links serine sensing to ribosome biogenesis and cell-cycle progression•G9A has an oncogenic function in tumorigenesis</description><identifier>ISSN: 1550-4131</identifier><identifier>EISSN: 1932-7420</identifier><identifier>DOI: 10.1016/j.cmet.2013.11.004</identifier><identifier>PMID: 24315373</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Autophagy - drug effects ; Azepines - pharmacology ; Bone Neoplasms - metabolism ; Bone Neoplasms - pathology ; Cell Line, Tumor ; Cell Proliferation ; Cell Survival - drug effects ; Epigenomics ; Glycine - biosynthesis ; HeLa Cells ; Histocompatibility Antigens - genetics ; Histocompatibility Antigens - metabolism ; Histone-Lysine N-Methyltransferase - antagonists &amp; inhibitors ; Histone-Lysine N-Methyltransferase - genetics ; Histone-Lysine N-Methyltransferase - metabolism ; Histones - metabolism ; Humans ; Methylation ; Mice ; Microtubule-Associated Proteins - metabolism ; Quinazolines - pharmacology ; Ribosomes - metabolism ; Serine - biosynthesis ; Serine - pharmacology ; Transcription, Genetic - drug effects</subject><ispartof>Cell metabolism, 2013-12, Vol.18 (6), p.896-907</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>2013 Elsevier Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-9dca70419906ff0bb147a139dc19ebbae0cd0b70765a0e674a56145ed9daf2e33</citedby><cites>FETCH-LOGICAL-c521t-9dca70419906ff0bb147a139dc19ebbae0cd0b70765a0e674a56145ed9daf2e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1550413113004531$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24315373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Jane</creatorcontrib><creatorcontrib>Li, Tai</creatorcontrib><creatorcontrib>Wang, Xiangwei</creatorcontrib><creatorcontrib>Zhao, Erhu</creatorcontrib><creatorcontrib>Choi, Jeong-Hyeon</creatorcontrib><creatorcontrib>Yang, Liqun</creatorcontrib><creatorcontrib>Zha, Yunhong</creatorcontrib><creatorcontrib>Dong, Zheng</creatorcontrib><creatorcontrib>Huang, Shuang</creatorcontrib><creatorcontrib>Asara, John M.</creatorcontrib><creatorcontrib>Cui, Hongjuan</creatorcontrib><creatorcontrib>Ding, Han-Fei</creatorcontrib><title>The Histone H3 Methyltransferase G9A Epigenetically Activates the Serine-Glycine Synthesis Pathway to Sustain Cancer Cell Survival and Proliferation</title><title>Cell metabolism</title><addtitle>Cell Metab</addtitle><description>Increased activation of the serine-glycine biosynthetic pathway is an integral part of cancer metabolism that drives macromolecule synthesis needed for cell proliferation. Whether this pathway is under epigenetic control is unknown. Here we show that the histone H3 lysine 9 (H3K9) methyltransferase G9A is required for maintaining the pathway enzyme genes in an active state marked by H3K9 monomethylation and for the transcriptional activation of this pathway in response to serine deprivation. G9A inactivation depletes serine and its downstream metabolites, triggering cell death with autophagy in cancer cell lines of different tissue origins. Higher G9A expression, which is observed in various cancers and is associated with greater mortality in cancer patients, increases serine production and enhances the proliferation and tumorigenicity of cancer cells. These findings identify a G9A-dependent epigenetic program in the control of cancer metabolism, providing a rationale for G9A inhibition as a therapeutic strategy for cancer. [Display omitted] •G9A sustains cancer cell survival and proliferation•G9A epigenetically activates the serine-glycine biosynthetic pathway•G9A links serine sensing to ribosome biogenesis and cell-cycle progression•G9A has an oncogenic function in tumorigenesis</description><subject>Animals</subject><subject>Autophagy - drug effects</subject><subject>Azepines - pharmacology</subject><subject>Bone Neoplasms - metabolism</subject><subject>Bone Neoplasms - pathology</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Cell Survival - drug effects</subject><subject>Epigenomics</subject><subject>Glycine - biosynthesis</subject><subject>HeLa Cells</subject><subject>Histocompatibility Antigens - genetics</subject><subject>Histocompatibility Antigens - metabolism</subject><subject>Histone-Lysine N-Methyltransferase - antagonists &amp; inhibitors</subject><subject>Histone-Lysine N-Methyltransferase - genetics</subject><subject>Histone-Lysine N-Methyltransferase - metabolism</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Methylation</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Quinazolines - pharmacology</subject><subject>Ribosomes - metabolism</subject><subject>Serine - biosynthesis</subject><subject>Serine - pharmacology</subject><subject>Transcription, Genetic - drug effects</subject><issn>1550-4131</issn><issn>1932-7420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Udtq3DAQNaWlubQ_0IeiH7A7Y_kSQyksS7oJpDSw6bMYy-OsFq28SMoG_0c_uFq2De1Ln85wZs4ZZk6WfUAoELD5tC30jmNRAsoCsQCoXmXn2Mkyb6sSXqe6riGvUOJZdhHCFkA2spNvs7OykljLVp5nPx82LG5MiJNLKMU3jpvZRk8ujOwpsFh1C3G9N4_sOBpN1s5ioaM5UOQgYlKv2RvH-crOOqFYzy6xwQRxT3HzTLOIk1g_hUjGiSU5zV4s2drE-UOysYLcIO79ZM1xYzSTe5e9GckGfv8bL7MfX68fljf53ffV7XJxl-u6xJh3g6YWKuw6aMYR-h6rllAmGjvue2LQA_QttE1NwE1bUd1gVfPQDTSWLOVl9uXku3_qdzxodulwq_be7MjPaiKj_u04s1GP00HJq_YK6iYZlCcD7acQPI8vWgR1zEht1TEjdcxIIaqUURJ9_Hvri-RPKGng82mA0-0Hw14FbTg9bjCedVTDZP7n_wszgKdj</recordid><startdate>20131203</startdate><enddate>20131203</enddate><creator>Ding, Jane</creator><creator>Li, Tai</creator><creator>Wang, Xiangwei</creator><creator>Zhao, Erhu</creator><creator>Choi, Jeong-Hyeon</creator><creator>Yang, Liqun</creator><creator>Zha, Yunhong</creator><creator>Dong, Zheng</creator><creator>Huang, Shuang</creator><creator>Asara, John M.</creator><creator>Cui, Hongjuan</creator><creator>Ding, Han-Fei</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20131203</creationdate><title>The Histone H3 Methyltransferase G9A Epigenetically Activates the Serine-Glycine Synthesis Pathway to Sustain Cancer Cell Survival and Proliferation</title><author>Ding, Jane ; Li, Tai ; Wang, Xiangwei ; Zhao, Erhu ; Choi, Jeong-Hyeon ; Yang, Liqun ; Zha, Yunhong ; Dong, Zheng ; Huang, Shuang ; Asara, John M. ; Cui, Hongjuan ; Ding, Han-Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-9dca70419906ff0bb147a139dc19ebbae0cd0b70765a0e674a56145ed9daf2e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Autophagy - drug effects</topic><topic>Azepines - pharmacology</topic><topic>Bone Neoplasms - metabolism</topic><topic>Bone Neoplasms - pathology</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Cell Survival - drug effects</topic><topic>Epigenomics</topic><topic>Glycine - biosynthesis</topic><topic>HeLa Cells</topic><topic>Histocompatibility Antigens - genetics</topic><topic>Histocompatibility Antigens - metabolism</topic><topic>Histone-Lysine N-Methyltransferase - antagonists &amp; inhibitors</topic><topic>Histone-Lysine N-Methyltransferase - genetics</topic><topic>Histone-Lysine N-Methyltransferase - metabolism</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Methylation</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Quinazolines - pharmacology</topic><topic>Ribosomes - metabolism</topic><topic>Serine - biosynthesis</topic><topic>Serine - pharmacology</topic><topic>Transcription, Genetic - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Jane</creatorcontrib><creatorcontrib>Li, Tai</creatorcontrib><creatorcontrib>Wang, Xiangwei</creatorcontrib><creatorcontrib>Zhao, Erhu</creatorcontrib><creatorcontrib>Choi, Jeong-Hyeon</creatorcontrib><creatorcontrib>Yang, Liqun</creatorcontrib><creatorcontrib>Zha, Yunhong</creatorcontrib><creatorcontrib>Dong, Zheng</creatorcontrib><creatorcontrib>Huang, Shuang</creatorcontrib><creatorcontrib>Asara, John M.</creatorcontrib><creatorcontrib>Cui, Hongjuan</creatorcontrib><creatorcontrib>Ding, Han-Fei</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Jane</au><au>Li, Tai</au><au>Wang, Xiangwei</au><au>Zhao, Erhu</au><au>Choi, Jeong-Hyeon</au><au>Yang, Liqun</au><au>Zha, Yunhong</au><au>Dong, Zheng</au><au>Huang, Shuang</au><au>Asara, John M.</au><au>Cui, Hongjuan</au><au>Ding, Han-Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Histone H3 Methyltransferase G9A Epigenetically Activates the Serine-Glycine Synthesis Pathway to Sustain Cancer Cell Survival and Proliferation</atitle><jtitle>Cell metabolism</jtitle><addtitle>Cell Metab</addtitle><date>2013-12-03</date><risdate>2013</risdate><volume>18</volume><issue>6</issue><spage>896</spage><epage>907</epage><pages>896-907</pages><issn>1550-4131</issn><eissn>1932-7420</eissn><abstract>Increased activation of the serine-glycine biosynthetic pathway is an integral part of cancer metabolism that drives macromolecule synthesis needed for cell proliferation. Whether this pathway is under epigenetic control is unknown. Here we show that the histone H3 lysine 9 (H3K9) methyltransferase G9A is required for maintaining the pathway enzyme genes in an active state marked by H3K9 monomethylation and for the transcriptional activation of this pathway in response to serine deprivation. G9A inactivation depletes serine and its downstream metabolites, triggering cell death with autophagy in cancer cell lines of different tissue origins. Higher G9A expression, which is observed in various cancers and is associated with greater mortality in cancer patients, increases serine production and enhances the proliferation and tumorigenicity of cancer cells. These findings identify a G9A-dependent epigenetic program in the control of cancer metabolism, providing a rationale for G9A inhibition as a therapeutic strategy for cancer. [Display omitted] •G9A sustains cancer cell survival and proliferation•G9A epigenetically activates the serine-glycine biosynthetic pathway•G9A links serine sensing to ribosome biogenesis and cell-cycle progression•G9A has an oncogenic function in tumorigenesis</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24315373</pmid><doi>10.1016/j.cmet.2013.11.004</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1550-4131
ispartof Cell metabolism, 2013-12, Vol.18 (6), p.896-907
issn 1550-4131
1932-7420
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3878056
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Autophagy - drug effects
Azepines - pharmacology
Bone Neoplasms - metabolism
Bone Neoplasms - pathology
Cell Line, Tumor
Cell Proliferation
Cell Survival - drug effects
Epigenomics
Glycine - biosynthesis
HeLa Cells
Histocompatibility Antigens - genetics
Histocompatibility Antigens - metabolism
Histone-Lysine N-Methyltransferase - antagonists & inhibitors
Histone-Lysine N-Methyltransferase - genetics
Histone-Lysine N-Methyltransferase - metabolism
Histones - metabolism
Humans
Methylation
Mice
Microtubule-Associated Proteins - metabolism
Quinazolines - pharmacology
Ribosomes - metabolism
Serine - biosynthesis
Serine - pharmacology
Transcription, Genetic - drug effects
title The Histone H3 Methyltransferase G9A Epigenetically Activates the Serine-Glycine Synthesis Pathway to Sustain Cancer Cell Survival and Proliferation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Histone%20H3%20Methyltransferase%20G9A%20Epigenetically%20Activates%20the%20Serine-Glycine%20Synthesis%20Pathway%20to%20Sustain%20Cancer%20Cell%20Survival%20and%20Proliferation&rft.jtitle=Cell%20metabolism&rft.au=Ding,%20Jane&rft.date=2013-12-03&rft.volume=18&rft.issue=6&rft.spage=896&rft.epage=907&rft.pages=896-907&rft.issn=1550-4131&rft.eissn=1932-7420&rft_id=info:doi/10.1016/j.cmet.2013.11.004&rft_dat=%3Cpubmed_cross%3E24315373%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24315373&rft_els_id=S1550413113004531&rfr_iscdi=true