AMD3100 synergizes with G-CSF to mobilize repopulating stem cells in Fanconi anemia knockout mice
Fanconi anemia (FA) is a heterogeneous inherited disorder characterized by a progressive bone marrow (BM) failure and susceptibility to myeloid leukemia. Genetic correction using gene-transfer technology is one potential therapy. A major hurdle in applying this technology in FA patients is the inabi...
Gespeichert in:
Veröffentlicht in: | Experimental hematology 2008-09, Vol.36 (9), p.1084-1090 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fanconi anemia (FA) is a heterogeneous inherited disorder characterized by a progressive bone marrow (BM) failure and susceptibility to myeloid leukemia. Genetic correction using gene-transfer technology is one potential therapy. A major hurdle in applying this technology in FA patients is the inability of granulocyte colony-stimulating factor (G-CSF) to mobilize sufficient numbers of hematopoietic stem (HSC)/progenitor cells (HPC) from the BM to the peripheral blood. Whether the low number of CD34+ cells is a result of BM hypoplasia or an inability of G-CSF to adequately mobilize FA HSC/HPC remains incompletely understood. Here we use competitive repopulation of lethally irradiated primary and secondary recipients to show that in two murine models of FA, AMD3100 synergizes with G-CSF resulting in a mobilization of HSC, whereas G-CSF alone fails to mobilize stem cells even in the absence of hypoplasia. |
---|---|
ISSN: | 0301-472X 1873-2399 |
DOI: | 10.1016/j.exphem.2008.03.016 |