Large-Scale Modeling of Epileptic Seizures : Scaling Properties of Two Parallel Neuronal Network Simulation Algorithms

Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2013-01, Vol.2013 (2013), p.1-10
Hauptverfasser: Lee, Hyong C., Visser, Sid, Pesce, Lorenzo L., van Drongelen, Wim, Wildeman, Albert, Stevens, Rick L., Hereld, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2013
container_start_page 1
container_title Computational and mathematical methods in medicine
container_volume 2013
creator Lee, Hyong C.
Visser, Sid
Pesce, Lorenzo L.
van Drongelen, Wim
Wildeman, Albert
Stevens, Rick L.
Hereld, Mark
description Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determined the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons) and processor pool sizes (1 to 256 processors). Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers.
doi_str_mv 10.1155/2013/182145
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3876705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1490754245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-5a158a5400595abf2bd0f4012e1b131cadc27428fbd6d0a96d8f8c57601d2dce3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxSMEoh9w4gyyOFWgUI9jJ1kOSFVVPqQFKm2RuFmOM9k1OHGwna7gr8dRygpOnGY089Obp3lZ9gToKwAhzhmF4hxqBlzcy46h4nVeVlDfP_T061F2EsI3SgVUAh5mR4xzKGm5Os5u18pvMd9oZZF8dC1aM2yJ68jVaCyO0WiyQfNr8hjIazJj8_7auxF9NGmY0Ju9I9fKK2vRkk84eTeouYl757-Tjeknq6JxA7mwW-dN3PXhUfagUzbg47t6mn15e3Vz-T5ff3734fJinWteipgLBaJWgifnK6GajjUt7TgFhtBAAVq1mlWc1V3Tli1Vq7Ktu1qLqqTQslZjcZq9WXTHqekxTYaYfMrRm175n9IpI__dDGYnt-5WFnWVHieSwPNFwIVoZNAmot5pNwyoowTGqqooE3R2d8W7HxOGKHsTNFqrBnRTkMBXtBKc8Vnv5YJq70Lw2B28AJVznHKOUy5xJvrZ3_YP7J_8EvBiAXZmaNXe_Eft6QJjQrBTB5gLxuui-A3pDLLI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490754245</pqid></control><display><type>article</type><title>Large-Scale Modeling of Epileptic Seizures : Scaling Properties of Two Parallel Neuronal Network Simulation Algorithms</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Lee, Hyong C. ; Visser, Sid ; Pesce, Lorenzo L. ; van Drongelen, Wim ; Wildeman, Albert ; Stevens, Rick L. ; Hereld, Mark</creator><contributor>Liu, Qingshan</contributor><creatorcontrib>Lee, Hyong C. ; Visser, Sid ; Pesce, Lorenzo L. ; van Drongelen, Wim ; Wildeman, Albert ; Stevens, Rick L. ; Hereld, Mark ; Liu, Qingshan</creatorcontrib><description>Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determined the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons) and processor pool sizes (1 to 256 processors). Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2013/182145</identifier><identifier>PMID: 24416069</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Algorithms ; Computer Simulation ; Electroencephalography ; Epilepsy - physiopathology ; Humans ; Models, Biological ; Neural Networks (Computer) ; Neurons - physiology ; Programming Languages ; Signal Processing, Computer-Assisted ; Software</subject><ispartof>Computational and mathematical methods in medicine, 2013-01, Vol.2013 (2013), p.1-10</ispartof><rights>Copyright © 2013 Lorenzo L. Pesce et al.</rights><rights>Copyright © 2013 Lorenzo L. Pesce et al. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-5a158a5400595abf2bd0f4012e1b131cadc27428fbd6d0a96d8f8c57601d2dce3</citedby><cites>FETCH-LOGICAL-c465t-5a158a5400595abf2bd0f4012e1b131cadc27428fbd6d0a96d8f8c57601d2dce3</cites><orcidid>0000-0002-0268-2880 ; 0000-0001-8950-5424 ; 0000-0001-8962-4175 ; 0000-0003-0219-5270 ; 0000000189624175 ; 0000000302195270 ; 0000000189505424 ; 0000000202682880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3876705/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3876705/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24416069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1227736$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Liu, Qingshan</contributor><creatorcontrib>Lee, Hyong C.</creatorcontrib><creatorcontrib>Visser, Sid</creatorcontrib><creatorcontrib>Pesce, Lorenzo L.</creatorcontrib><creatorcontrib>van Drongelen, Wim</creatorcontrib><creatorcontrib>Wildeman, Albert</creatorcontrib><creatorcontrib>Stevens, Rick L.</creatorcontrib><creatorcontrib>Hereld, Mark</creatorcontrib><title>Large-Scale Modeling of Epileptic Seizures : Scaling Properties of Two Parallel Neuronal Network Simulation Algorithms</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determined the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons) and processor pool sizes (1 to 256 processors). Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers.</description><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Electroencephalography</subject><subject>Epilepsy - physiopathology</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Neural Networks (Computer)</subject><subject>Neurons - physiology</subject><subject>Programming Languages</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Software</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxSMEoh9w4gyyOFWgUI9jJ1kOSFVVPqQFKm2RuFmOM9k1OHGwna7gr8dRygpOnGY089Obp3lZ9gToKwAhzhmF4hxqBlzcy46h4nVeVlDfP_T061F2EsI3SgVUAh5mR4xzKGm5Os5u18pvMd9oZZF8dC1aM2yJ68jVaCyO0WiyQfNr8hjIazJj8_7auxF9NGmY0Ju9I9fKK2vRkk84eTeouYl757-Tjeknq6JxA7mwW-dN3PXhUfagUzbg47t6mn15e3Vz-T5ff3734fJinWteipgLBaJWgifnK6GajjUt7TgFhtBAAVq1mlWc1V3Tli1Vq7Ktu1qLqqTQslZjcZq9WXTHqekxTYaYfMrRm175n9IpI__dDGYnt-5WFnWVHieSwPNFwIVoZNAmot5pNwyoowTGqqooE3R2d8W7HxOGKHsTNFqrBnRTkMBXtBKc8Vnv5YJq70Lw2B28AJVznHKOUy5xJvrZ3_YP7J_8EvBiAXZmaNXe_Eft6QJjQrBTB5gLxuui-A3pDLLI</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Lee, Hyong C.</creator><creator>Visser, Sid</creator><creator>Pesce, Lorenzo L.</creator><creator>van Drongelen, Wim</creator><creator>Wildeman, Albert</creator><creator>Stevens, Rick L.</creator><creator>Hereld, Mark</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0268-2880</orcidid><orcidid>https://orcid.org/0000-0001-8950-5424</orcidid><orcidid>https://orcid.org/0000-0001-8962-4175</orcidid><orcidid>https://orcid.org/0000-0003-0219-5270</orcidid><orcidid>https://orcid.org/0000000189624175</orcidid><orcidid>https://orcid.org/0000000302195270</orcidid><orcidid>https://orcid.org/0000000189505424</orcidid><orcidid>https://orcid.org/0000000202682880</orcidid></search><sort><creationdate>20130101</creationdate><title>Large-Scale Modeling of Epileptic Seizures : Scaling Properties of Two Parallel Neuronal Network Simulation Algorithms</title><author>Lee, Hyong C. ; Visser, Sid ; Pesce, Lorenzo L. ; van Drongelen, Wim ; Wildeman, Albert ; Stevens, Rick L. ; Hereld, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-5a158a5400595abf2bd0f4012e1b131cadc27428fbd6d0a96d8f8c57601d2dce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Electroencephalography</topic><topic>Epilepsy - physiopathology</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Neural Networks (Computer)</topic><topic>Neurons - physiology</topic><topic>Programming Languages</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hyong C.</creatorcontrib><creatorcontrib>Visser, Sid</creatorcontrib><creatorcontrib>Pesce, Lorenzo L.</creatorcontrib><creatorcontrib>van Drongelen, Wim</creatorcontrib><creatorcontrib>Wildeman, Albert</creatorcontrib><creatorcontrib>Stevens, Rick L.</creatorcontrib><creatorcontrib>Hereld, Mark</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hyong C.</au><au>Visser, Sid</au><au>Pesce, Lorenzo L.</au><au>van Drongelen, Wim</au><au>Wildeman, Albert</au><au>Stevens, Rick L.</au><au>Hereld, Mark</au><au>Liu, Qingshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Scale Modeling of Epileptic Seizures : Scaling Properties of Two Parallel Neuronal Network Simulation Algorithms</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determined the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons) and processor pool sizes (1 to 256 processors). Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>24416069</pmid><doi>10.1155/2013/182145</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0268-2880</orcidid><orcidid>https://orcid.org/0000-0001-8950-5424</orcidid><orcidid>https://orcid.org/0000-0001-8962-4175</orcidid><orcidid>https://orcid.org/0000-0003-0219-5270</orcidid><orcidid>https://orcid.org/0000000189624175</orcidid><orcidid>https://orcid.org/0000000302195270</orcidid><orcidid>https://orcid.org/0000000189505424</orcidid><orcidid>https://orcid.org/0000000202682880</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2013-01, Vol.2013 (2013), p.1-10
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3876705
source MEDLINE; Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects Algorithms
Computer Simulation
Electroencephalography
Epilepsy - physiopathology
Humans
Models, Biological
Neural Networks (Computer)
Neurons - physiology
Programming Languages
Signal Processing, Computer-Assisted
Software
title Large-Scale Modeling of Epileptic Seizures : Scaling Properties of Two Parallel Neuronal Network Simulation Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Scale%20Modeling%20of%20Epileptic%20Seizures%20:%20Scaling%20Properties%20of%20Two%20Parallel%20Neuronal%20Network%20Simulation%20Algorithms&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Lee,%20Hyong%20C.&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2013/182145&rft_dat=%3Cproquest_pubme%3E1490754245%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490754245&rft_id=info:pmid/24416069&rfr_iscdi=true