king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system

Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-12, Vol.110 (51), p.20651-20656
Hauptverfasser: Vonk, Freek J., Casewell, Nicholas R., Henkel, Christiaan V., Heimberg, Alysha M., Jansen, Hans J., McCleary, Ryan J. R., Kerkkamp, Harald M. E., Vos, Rutger A., Guerreiro, Isabel, Calvete, Juan J., Wüster, Wolfgang, Woods, Anthony E., Logan, Jessica M., Harrison, Robert A., Castoe, Todd A., de Koning, A. P. Jason, Pollock, David D., Yandell, Mark, Calderon, Diego, Renjifo, Camila, Currier, Rachel B., Salgado, David, Pla, Davinia, Sanz, Libia, Hyder, Asad S., Ribeiro, José M. C., Arntzen, Jan W., van den Thillart, Guido E. E. J. M., Boetzer, Marten, Pirovano, Walter, Dirks, Ron P., Spaink, Herman P., Duboule, Denis, McGlinn, Edwina, Kini, Manjunatha, Richardson, Michael K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20656
container_issue 51
container_start_page 20651
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Vonk, Freek J.
Casewell, Nicholas R.
Henkel, Christiaan V.
Heimberg, Alysha M.
Jansen, Hans J.
McCleary, Ryan J. R.
Kerkkamp, Harald M. E.
Vos, Rutger A.
Guerreiro, Isabel
Calvete, Juan J.
Wüster, Wolfgang
Woods, Anthony E.
Logan, Jessica M.
Harrison, Robert A.
Castoe, Todd A.
de Koning, A. P. Jason
Pollock, David D.
Yandell, Mark
Calderon, Diego
Renjifo, Camila
Currier, Rachel B.
Salgado, David
Pla, Davinia
Sanz, Libia
Hyder, Asad S.
Ribeiro, José M. C.
Arntzen, Jan W.
van den Thillart, Guido E. E. J. M.
Boetzer, Marten
Pirovano, Walter
Dirks, Ron P.
Spaink, Herman P.
Duboule, Denis
McGlinn, Edwina
Kini, Manjunatha
Richardson, Michael K.
description Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12 . Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.
doi_str_mv 10.1073/pnas.1314702110
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3870661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23761609</jstor_id><sourcerecordid>23761609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c624t-655b0c697806c575bb840be23d7cde9f91e48e7696850ff0ea8c7b681df6e63</originalsourceid><addsrcrecordid>eNqNks1v1DAQxSMEotvCmRNgiQuXtDOJ449LJVRRQKrEoXDgZDnJZJvtxl7sZKX973HYZQtc4GTZ7zdPnjeTZS8QzhFkebFxNp5jiVxCgQiPsgWCxlxwDY-zBUAhc8ULfpKdxrgCAF0peJqdFLzQUgMssm_3vVuyxtfBsiU5PxALtCW7jqzdOTv0zfxMjLZ-PY29d8y6ltnWbkb789o7Nt4Ri87eE9vODizu4kjDs-xJl2zo-eE8y26v33-5-pjffP7w6erdTd6Igo-5qKoaGqGlAtFUsqprxaGmomxl05LuNBJXJIUWqoKuA7KqkbVQ2HaCRHmWXe5dN1M9UNuQG4Ndm03oBxt2xtve_Km4_s4s_daUSoIQmAzeHgyC_z5RHM3Qx4bWa-vIT9GgghIhfU78G-W6EBzTKP4DTQ1xTCNI6Ju_0JWfgkuRJUqiRqk4T9TFnmqCjzFQd2wRwcyrYOZVMA-rkCpe_Z7Mkf81-wSwAzBXHu2SX4WmAFHN4bzcI6s4-vBgUUqBAnTSX-_1znpjl6GP5uttAUkD5KBSvD8AvnnMbA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1471917844</pqid></control><display><type>article</type><title>king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Vonk, Freek J. ; Casewell, Nicholas R. ; Henkel, Christiaan V. ; Heimberg, Alysha M. ; Jansen, Hans J. ; McCleary, Ryan J. R. ; Kerkkamp, Harald M. E. ; Vos, Rutger A. ; Guerreiro, Isabel ; Calvete, Juan J. ; Wüster, Wolfgang ; Woods, Anthony E. ; Logan, Jessica M. ; Harrison, Robert A. ; Castoe, Todd A. ; de Koning, A. P. Jason ; Pollock, David D. ; Yandell, Mark ; Calderon, Diego ; Renjifo, Camila ; Currier, Rachel B. ; Salgado, David ; Pla, Davinia ; Sanz, Libia ; Hyder, Asad S. ; Ribeiro, José M. C. ; Arntzen, Jan W. ; van den Thillart, Guido E. E. J. M. ; Boetzer, Marten ; Pirovano, Walter ; Dirks, Ron P. ; Spaink, Herman P. ; Duboule, Denis ; McGlinn, Edwina ; Kini, Manjunatha ; Richardson, Michael K.</creator><creatorcontrib>Vonk, Freek J. ; Casewell, Nicholas R. ; Henkel, Christiaan V. ; Heimberg, Alysha M. ; Jansen, Hans J. ; McCleary, Ryan J. R. ; Kerkkamp, Harald M. E. ; Vos, Rutger A. ; Guerreiro, Isabel ; Calvete, Juan J. ; Wüster, Wolfgang ; Woods, Anthony E. ; Logan, Jessica M. ; Harrison, Robert A. ; Castoe, Todd A. ; de Koning, A. P. Jason ; Pollock, David D. ; Yandell, Mark ; Calderon, Diego ; Renjifo, Camila ; Currier, Rachel B. ; Salgado, David ; Pla, Davinia ; Sanz, Libia ; Hyder, Asad S. ; Ribeiro, José M. C. ; Arntzen, Jan W. ; van den Thillart, Guido E. E. J. M. ; Boetzer, Marten ; Pirovano, Walter ; Dirks, Ron P. ; Spaink, Herman P. ; Duboule, Denis ; McGlinn, Edwina ; Kini, Manjunatha ; Richardson, Michael K.</creatorcontrib><description>Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12 . Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1314702110</identifier><identifier>PMID: 24297900</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adaptation, Biological - physiology ; Amniota ; Animal glands ; Animals ; Biological Sciences ; Correlation analysis ; data collection ; Elapid Venoms - genetics ; Elapid Venoms - metabolism ; Elapidae - genetics ; Elapidae - metabolism ; Evolution ; Evolution, Molecular ; Exocrine Glands - metabolism ; gene duplication ; Gene expression ; Genes ; Genome - physiology ; Genomes ; homeotic genes ; lectins ; MicroRNA ; MicroRNAs - genetics ; MicroRNAs - metabolism ; natural selection ; Ophiophagus hannah ; Platypus ; Predation ; predators ; Proteins ; proteome ; Snake venoms ; Snakes ; Toxins ; transcriptome ; Transcriptome - physiology ; Transcriptomes ; Venoms</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-12, Vol.110 (51), p.20651-20656</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 17, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c624t-655b0c697806c575bb840be23d7cde9f91e48e7696850ff0ea8c7b681df6e63</citedby><cites>FETCH-LOGICAL-c624t-655b0c697806c575bb840be23d7cde9f91e48e7696850ff0ea8c7b681df6e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/51.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23761609$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23761609$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24297900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vonk, Freek J.</creatorcontrib><creatorcontrib>Casewell, Nicholas R.</creatorcontrib><creatorcontrib>Henkel, Christiaan V.</creatorcontrib><creatorcontrib>Heimberg, Alysha M.</creatorcontrib><creatorcontrib>Jansen, Hans J.</creatorcontrib><creatorcontrib>McCleary, Ryan J. R.</creatorcontrib><creatorcontrib>Kerkkamp, Harald M. E.</creatorcontrib><creatorcontrib>Vos, Rutger A.</creatorcontrib><creatorcontrib>Guerreiro, Isabel</creatorcontrib><creatorcontrib>Calvete, Juan J.</creatorcontrib><creatorcontrib>Wüster, Wolfgang</creatorcontrib><creatorcontrib>Woods, Anthony E.</creatorcontrib><creatorcontrib>Logan, Jessica M.</creatorcontrib><creatorcontrib>Harrison, Robert A.</creatorcontrib><creatorcontrib>Castoe, Todd A.</creatorcontrib><creatorcontrib>de Koning, A. P. Jason</creatorcontrib><creatorcontrib>Pollock, David D.</creatorcontrib><creatorcontrib>Yandell, Mark</creatorcontrib><creatorcontrib>Calderon, Diego</creatorcontrib><creatorcontrib>Renjifo, Camila</creatorcontrib><creatorcontrib>Currier, Rachel B.</creatorcontrib><creatorcontrib>Salgado, David</creatorcontrib><creatorcontrib>Pla, Davinia</creatorcontrib><creatorcontrib>Sanz, Libia</creatorcontrib><creatorcontrib>Hyder, Asad S.</creatorcontrib><creatorcontrib>Ribeiro, José M. C.</creatorcontrib><creatorcontrib>Arntzen, Jan W.</creatorcontrib><creatorcontrib>van den Thillart, Guido E. E. J. M.</creatorcontrib><creatorcontrib>Boetzer, Marten</creatorcontrib><creatorcontrib>Pirovano, Walter</creatorcontrib><creatorcontrib>Dirks, Ron P.</creatorcontrib><creatorcontrib>Spaink, Herman P.</creatorcontrib><creatorcontrib>Duboule, Denis</creatorcontrib><creatorcontrib>McGlinn, Edwina</creatorcontrib><creatorcontrib>Kini, Manjunatha</creatorcontrib><creatorcontrib>Richardson, Michael K.</creatorcontrib><title>king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12 . Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.</description><subject>Adaptation, Biological - physiology</subject><subject>Amniota</subject><subject>Animal glands</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Correlation analysis</subject><subject>data collection</subject><subject>Elapid Venoms - genetics</subject><subject>Elapid Venoms - metabolism</subject><subject>Elapidae - genetics</subject><subject>Elapidae - metabolism</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Exocrine Glands - metabolism</subject><subject>gene duplication</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genome - physiology</subject><subject>Genomes</subject><subject>homeotic genes</subject><subject>lectins</subject><subject>MicroRNA</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>natural selection</subject><subject>Ophiophagus hannah</subject><subject>Platypus</subject><subject>Predation</subject><subject>predators</subject><subject>Proteins</subject><subject>proteome</subject><subject>Snake venoms</subject><subject>Snakes</subject><subject>Toxins</subject><subject>transcriptome</subject><subject>Transcriptome - physiology</subject><subject>Transcriptomes</subject><subject>Venoms</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1v1DAQxSMEotvCmRNgiQuXtDOJ449LJVRRQKrEoXDgZDnJZJvtxl7sZKX973HYZQtc4GTZ7zdPnjeTZS8QzhFkebFxNp5jiVxCgQiPsgWCxlxwDY-zBUAhc8ULfpKdxrgCAF0peJqdFLzQUgMssm_3vVuyxtfBsiU5PxALtCW7jqzdOTv0zfxMjLZ-PY29d8y6ltnWbkb789o7Nt4Ri87eE9vODizu4kjDs-xJl2zo-eE8y26v33-5-pjffP7w6erdTd6Igo-5qKoaGqGlAtFUsqprxaGmomxl05LuNBJXJIUWqoKuA7KqkbVQ2HaCRHmWXe5dN1M9UNuQG4Ndm03oBxt2xtve_Km4_s4s_daUSoIQmAzeHgyC_z5RHM3Qx4bWa-vIT9GgghIhfU78G-W6EBzTKP4DTQ1xTCNI6Ju_0JWfgkuRJUqiRqk4T9TFnmqCjzFQd2wRwcyrYOZVMA-rkCpe_Z7Mkf81-wSwAzBXHu2SX4WmAFHN4bzcI6s4-vBgUUqBAnTSX-_1znpjl6GP5uttAUkD5KBSvD8AvnnMbA</recordid><startdate>20131217</startdate><enddate>20131217</enddate><creator>Vonk, Freek J.</creator><creator>Casewell, Nicholas R.</creator><creator>Henkel, Christiaan V.</creator><creator>Heimberg, Alysha M.</creator><creator>Jansen, Hans J.</creator><creator>McCleary, Ryan J. R.</creator><creator>Kerkkamp, Harald M. E.</creator><creator>Vos, Rutger A.</creator><creator>Guerreiro, Isabel</creator><creator>Calvete, Juan J.</creator><creator>Wüster, Wolfgang</creator><creator>Woods, Anthony E.</creator><creator>Logan, Jessica M.</creator><creator>Harrison, Robert A.</creator><creator>Castoe, Todd A.</creator><creator>de Koning, A. P. Jason</creator><creator>Pollock, David D.</creator><creator>Yandell, Mark</creator><creator>Calderon, Diego</creator><creator>Renjifo, Camila</creator><creator>Currier, Rachel B.</creator><creator>Salgado, David</creator><creator>Pla, Davinia</creator><creator>Sanz, Libia</creator><creator>Hyder, Asad S.</creator><creator>Ribeiro, José M. C.</creator><creator>Arntzen, Jan W.</creator><creator>van den Thillart, Guido E. E. J. M.</creator><creator>Boetzer, Marten</creator><creator>Pirovano, Walter</creator><creator>Dirks, Ron P.</creator><creator>Spaink, Herman P.</creator><creator>Duboule, Denis</creator><creator>McGlinn, Edwina</creator><creator>Kini, Manjunatha</creator><creator>Richardson, Michael K.</creator><general>National Academy of Sciences</general><general>NATIONAL ACADEMY OF SCIENCES</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7U7</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20131217</creationdate><title>king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system</title><author>Vonk, Freek J. ; Casewell, Nicholas R. ; Henkel, Christiaan V. ; Heimberg, Alysha M. ; Jansen, Hans J. ; McCleary, Ryan J. R. ; Kerkkamp, Harald M. E. ; Vos, Rutger A. ; Guerreiro, Isabel ; Calvete, Juan J. ; Wüster, Wolfgang ; Woods, Anthony E. ; Logan, Jessica M. ; Harrison, Robert A. ; Castoe, Todd A. ; de Koning, A. P. Jason ; Pollock, David D. ; Yandell, Mark ; Calderon, Diego ; Renjifo, Camila ; Currier, Rachel B. ; Salgado, David ; Pla, Davinia ; Sanz, Libia ; Hyder, Asad S. ; Ribeiro, José M. C. ; Arntzen, Jan W. ; van den Thillart, Guido E. E. J. M. ; Boetzer, Marten ; Pirovano, Walter ; Dirks, Ron P. ; Spaink, Herman P. ; Duboule, Denis ; McGlinn, Edwina ; Kini, Manjunatha ; Richardson, Michael K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c624t-655b0c697806c575bb840be23d7cde9f91e48e7696850ff0ea8c7b681df6e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation, Biological - physiology</topic><topic>Amniota</topic><topic>Animal glands</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Correlation analysis</topic><topic>data collection</topic><topic>Elapid Venoms - genetics</topic><topic>Elapid Venoms - metabolism</topic><topic>Elapidae - genetics</topic><topic>Elapidae - metabolism</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Exocrine Glands - metabolism</topic><topic>gene duplication</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genome - physiology</topic><topic>Genomes</topic><topic>homeotic genes</topic><topic>lectins</topic><topic>MicroRNA</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>natural selection</topic><topic>Ophiophagus hannah</topic><topic>Platypus</topic><topic>Predation</topic><topic>predators</topic><topic>Proteins</topic><topic>proteome</topic><topic>Snake venoms</topic><topic>Snakes</topic><topic>Toxins</topic><topic>transcriptome</topic><topic>Transcriptome - physiology</topic><topic>Transcriptomes</topic><topic>Venoms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vonk, Freek J.</creatorcontrib><creatorcontrib>Casewell, Nicholas R.</creatorcontrib><creatorcontrib>Henkel, Christiaan V.</creatorcontrib><creatorcontrib>Heimberg, Alysha M.</creatorcontrib><creatorcontrib>Jansen, Hans J.</creatorcontrib><creatorcontrib>McCleary, Ryan J. R.</creatorcontrib><creatorcontrib>Kerkkamp, Harald M. E.</creatorcontrib><creatorcontrib>Vos, Rutger A.</creatorcontrib><creatorcontrib>Guerreiro, Isabel</creatorcontrib><creatorcontrib>Calvete, Juan J.</creatorcontrib><creatorcontrib>Wüster, Wolfgang</creatorcontrib><creatorcontrib>Woods, Anthony E.</creatorcontrib><creatorcontrib>Logan, Jessica M.</creatorcontrib><creatorcontrib>Harrison, Robert A.</creatorcontrib><creatorcontrib>Castoe, Todd A.</creatorcontrib><creatorcontrib>de Koning, A. P. Jason</creatorcontrib><creatorcontrib>Pollock, David D.</creatorcontrib><creatorcontrib>Yandell, Mark</creatorcontrib><creatorcontrib>Calderon, Diego</creatorcontrib><creatorcontrib>Renjifo, Camila</creatorcontrib><creatorcontrib>Currier, Rachel B.</creatorcontrib><creatorcontrib>Salgado, David</creatorcontrib><creatorcontrib>Pla, Davinia</creatorcontrib><creatorcontrib>Sanz, Libia</creatorcontrib><creatorcontrib>Hyder, Asad S.</creatorcontrib><creatorcontrib>Ribeiro, José M. C.</creatorcontrib><creatorcontrib>Arntzen, Jan W.</creatorcontrib><creatorcontrib>van den Thillart, Guido E. E. J. M.</creatorcontrib><creatorcontrib>Boetzer, Marten</creatorcontrib><creatorcontrib>Pirovano, Walter</creatorcontrib><creatorcontrib>Dirks, Ron P.</creatorcontrib><creatorcontrib>Spaink, Herman P.</creatorcontrib><creatorcontrib>Duboule, Denis</creatorcontrib><creatorcontrib>McGlinn, Edwina</creatorcontrib><creatorcontrib>Kini, Manjunatha</creatorcontrib><creatorcontrib>Richardson, Michael K.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Toxicology Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vonk, Freek J.</au><au>Casewell, Nicholas R.</au><au>Henkel, Christiaan V.</au><au>Heimberg, Alysha M.</au><au>Jansen, Hans J.</au><au>McCleary, Ryan J. R.</au><au>Kerkkamp, Harald M. E.</au><au>Vos, Rutger A.</au><au>Guerreiro, Isabel</au><au>Calvete, Juan J.</au><au>Wüster, Wolfgang</au><au>Woods, Anthony E.</au><au>Logan, Jessica M.</au><au>Harrison, Robert A.</au><au>Castoe, Todd A.</au><au>de Koning, A. P. Jason</au><au>Pollock, David D.</au><au>Yandell, Mark</au><au>Calderon, Diego</au><au>Renjifo, Camila</au><au>Currier, Rachel B.</au><au>Salgado, David</au><au>Pla, Davinia</au><au>Sanz, Libia</au><au>Hyder, Asad S.</au><au>Ribeiro, José M. C.</au><au>Arntzen, Jan W.</au><au>van den Thillart, Guido E. E. J. M.</au><au>Boetzer, Marten</au><au>Pirovano, Walter</au><au>Dirks, Ron P.</au><au>Spaink, Herman P.</au><au>Duboule, Denis</au><au>McGlinn, Edwina</au><au>Kini, Manjunatha</au><au>Richardson, Michael K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-12-17</date><risdate>2013</risdate><volume>110</volume><issue>51</issue><spage>20651</spage><epage>20656</epage><pages>20651-20656</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12 . Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24297900</pmid><doi>10.1073/pnas.1314702110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-12, Vol.110 (51), p.20651-20656
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3870661
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adaptation, Biological - physiology
Amniota
Animal glands
Animals
Biological Sciences
Correlation analysis
data collection
Elapid Venoms - genetics
Elapid Venoms - metabolism
Elapidae - genetics
Elapidae - metabolism
Evolution
Evolution, Molecular
Exocrine Glands - metabolism
gene duplication
Gene expression
Genes
Genome - physiology
Genomes
homeotic genes
lectins
MicroRNA
MicroRNAs - genetics
MicroRNAs - metabolism
natural selection
Ophiophagus hannah
Platypus
Predation
predators
Proteins
proteome
Snake venoms
Snakes
Toxins
transcriptome
Transcriptome - physiology
Transcriptomes
Venoms
title king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=king%20cobra%20genome%20reveals%20dynamic%20gene%20evolution%20and%20adaptation%20in%20the%20snake%20venom%20system&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Vonk,%20Freek%20J.&rft.date=2013-12-17&rft.volume=110&rft.issue=51&rft.spage=20651&rft.epage=20656&rft.pages=20651-20656&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1314702110&rft_dat=%3Cjstor_pubme%3E23761609%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1471917844&rft_id=info:pmid/24297900&rft_jstor_id=23761609&rfr_iscdi=true