Nitrogen and carbon status are integrated at the transcriptional level by the nitrogen regulator NtrC in vivo

Nitrogen regulation in Escherichia coli is a model system for gene regulation in bacteria. Growth on glutamine as a sole nitrogen source is assumed to be nitrogen limiting, inferred from slow growth and strong NtrB/NtrC-dependent gene activation. However, we show that under these conditions, the int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:mBio 2013-11, Vol.4 (6), p.e00881-e00813
Hauptverfasser: Schumacher, Jörg, Behrends, Volker, Pan, Zhensheng, Brown, Dan R, Heydenreich, Franziska, Lewis, Matthew R, Bennett, Mark H, Razzaghi, Banafsheh, Komorowski, Michal, Barahona, Mauricio, Stumpf, Michael P H, Wigneshweraraj, Sivaramesh, Bundy, Jacob G, Buck, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e00813
container_issue 6
container_start_page e00881
container_title mBio
container_volume 4
creator Schumacher, Jörg
Behrends, Volker
Pan, Zhensheng
Brown, Dan R
Heydenreich, Franziska
Lewis, Matthew R
Bennett, Mark H
Razzaghi, Banafsheh
Komorowski, Michal
Barahona, Mauricio
Stumpf, Michael P H
Wigneshweraraj, Sivaramesh
Bundy, Jacob G
Buck, Martin
description Nitrogen regulation in Escherichia coli is a model system for gene regulation in bacteria. Growth on glutamine as a sole nitrogen source is assumed to be nitrogen limiting, inferred from slow growth and strong NtrB/NtrC-dependent gene activation. However, we show that under these conditions, the intracellular glutamine concentration is not limiting but 5.6-fold higher than in ammonium-replete conditions; in addition, α-ketoglutarate concentrations are elevated. We address this glutamine paradox from a systems perspective. We show that the dominant role of NtrC is to regulate glnA transcription and its own expression, indicating that the glutamine paradox is not due to NtrC-independent gene regulation. The absolute intracellular NtrC and GS concentrations reveal molecular control parameters, where NtrC-specific activities were highest in nitrogen-starved cells, while under glutamine growth, NtrC showed intermediate specific activity. We propose an in vivo model in which α-ketoglutarate can derepress nitrogen regulation despite nitrogen sufficiency. Nitrogen is the most important nutrient for cell growth after carbon, and its metabolism is coordinated at the metabolic, transcriptional, and protein levels. We show that growth on glutamine as a sole nitrogen source, commonly assumed to be nitrogen limiting and used as such as a model system for nitrogen limitation, is in fact nitrogen replete. Our integrative quantitative analysis of key molecules involved in nitrogen assimilation and regulation reveal that glutamine is not necessarily the dominant molecule signaling nitrogen sufficiency and that α-ketoglutarate may play a more important role in signaling nitrogen status. NtrB/NtrC integrates α-ketoglutarate and glutamine signaling--sensed by the UTase (glnD) and PII (glnB), respectively--and regulates the nitrogen response through self-regulated expression and phosphorylation-dependent activation of the nitrogen (ntr) regulon. Our findings support α-ketoglutarate acting as a global regulatory metabolite.
doi_str_mv 10.1128/mBio.00881-13
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3870243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1746406504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-6e1cc52af494cb2c141038d275172f00fc22851bb9469bf55f79575b6602b2223</originalsourceid><addsrcrecordid>eNqFkc1rGzEQxUVoaELiY69Bx1420Yyk_bgUWtMkhZBekrOQZK2tsiu5ktaQ_77rxA7tqXOZgXn8eI9HyCdg1wDY3ozffLxmrG2hAn5CzhEkqxoJ8GF_11AhYHdGFjn_YvNwDi1nH8kZCpQSUJ6T8dGXFNcuUB1W1OpkYqC56DJlqpOjPhS3Trq4FdWFlo2jJemQbfLb4mPQAx3czg3UvLw-w5GW3HoadImJPpa0nDF053fxkpz2eshucdgX5Pn2-9Pyvnr4efdj-fWhsgJZqWoH1krUveiENWhBAOPtCudkDfaM9RaxlWBMJ-rO9FL2TScbaeqaoUFEfkG-vHG3kxndyrowux7UNvlRpxcVtVf_foLfqHXcKd42DAWfAZ8PgBR_Ty4XNfps3TDo4OKUFTSiFqyWTPxfKmrgAkHIWVq9SW2KOSfXvzsCpvaFqn2h6rVQBXsXV3_HeFcf6-N_ADbRnNE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1461342145</pqid></control><display><type>article</type><title>Nitrogen and carbon status are integrated at the transcriptional level by the nitrogen regulator NtrC in vivo</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>American Society for Microbiology Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Schumacher, Jörg ; Behrends, Volker ; Pan, Zhensheng ; Brown, Dan R ; Heydenreich, Franziska ; Lewis, Matthew R ; Bennett, Mark H ; Razzaghi, Banafsheh ; Komorowski, Michal ; Barahona, Mauricio ; Stumpf, Michael P H ; Wigneshweraraj, Sivaramesh ; Bundy, Jacob G ; Buck, Martin</creator><creatorcontrib>Schumacher, Jörg ; Behrends, Volker ; Pan, Zhensheng ; Brown, Dan R ; Heydenreich, Franziska ; Lewis, Matthew R ; Bennett, Mark H ; Razzaghi, Banafsheh ; Komorowski, Michal ; Barahona, Mauricio ; Stumpf, Michael P H ; Wigneshweraraj, Sivaramesh ; Bundy, Jacob G ; Buck, Martin</creatorcontrib><description>Nitrogen regulation in Escherichia coli is a model system for gene regulation in bacteria. Growth on glutamine as a sole nitrogen source is assumed to be nitrogen limiting, inferred from slow growth and strong NtrB/NtrC-dependent gene activation. However, we show that under these conditions, the intracellular glutamine concentration is not limiting but 5.6-fold higher than in ammonium-replete conditions; in addition, α-ketoglutarate concentrations are elevated. We address this glutamine paradox from a systems perspective. We show that the dominant role of NtrC is to regulate glnA transcription and its own expression, indicating that the glutamine paradox is not due to NtrC-independent gene regulation. The absolute intracellular NtrC and GS concentrations reveal molecular control parameters, where NtrC-specific activities were highest in nitrogen-starved cells, while under glutamine growth, NtrC showed intermediate specific activity. We propose an in vivo model in which α-ketoglutarate can derepress nitrogen regulation despite nitrogen sufficiency. Nitrogen is the most important nutrient for cell growth after carbon, and its metabolism is coordinated at the metabolic, transcriptional, and protein levels. We show that growth on glutamine as a sole nitrogen source, commonly assumed to be nitrogen limiting and used as such as a model system for nitrogen limitation, is in fact nitrogen replete. Our integrative quantitative analysis of key molecules involved in nitrogen assimilation and regulation reveal that glutamine is not necessarily the dominant molecule signaling nitrogen sufficiency and that α-ketoglutarate may play a more important role in signaling nitrogen status. NtrB/NtrC integrates α-ketoglutarate and glutamine signaling--sensed by the UTase (glnD) and PII (glnB), respectively--and regulates the nitrogen response through self-regulated expression and phosphorylation-dependent activation of the nitrogen (ntr) regulon. Our findings support α-ketoglutarate acting as a global regulatory metabolite.</description><identifier>ISSN: 2161-2129</identifier><identifier>ISSN: 2150-7511</identifier><identifier>EISSN: 2150-7511</identifier><identifier>DOI: 10.1128/mBio.00881-13</identifier><identifier>PMID: 24255125</identifier><language>eng</language><publisher>United States: American Society of Microbiology</publisher><subject>alpha-ketoglutaric acid ; Ammonium Compounds - metabolism ; bacteria ; carbon ; Carbon - metabolism ; cell growth ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - metabolism ; gene activation ; Gene Expression Regulation, Bacterial ; glutamine ; Glutamine - metabolism ; metabolism ; metabolites ; nitrogen ; Nitrogen - metabolism ; PII Nitrogen Regulatory Proteins - metabolism ; quantitative analysis ; regulon ; transcription (genetics) ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>mBio, 2013-11, Vol.4 (6), p.e00881-e00813</ispartof><rights>Copyright © 2013 Schumacher et al. 2013 Schumacher et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-6e1cc52af494cb2c141038d275172f00fc22851bb9469bf55f79575b6602b2223</citedby><cites>FETCH-LOGICAL-c420t-6e1cc52af494cb2c141038d275172f00fc22851bb9469bf55f79575b6602b2223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870243/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870243/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,3175,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24255125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schumacher, Jörg</creatorcontrib><creatorcontrib>Behrends, Volker</creatorcontrib><creatorcontrib>Pan, Zhensheng</creatorcontrib><creatorcontrib>Brown, Dan R</creatorcontrib><creatorcontrib>Heydenreich, Franziska</creatorcontrib><creatorcontrib>Lewis, Matthew R</creatorcontrib><creatorcontrib>Bennett, Mark H</creatorcontrib><creatorcontrib>Razzaghi, Banafsheh</creatorcontrib><creatorcontrib>Komorowski, Michal</creatorcontrib><creatorcontrib>Barahona, Mauricio</creatorcontrib><creatorcontrib>Stumpf, Michael P H</creatorcontrib><creatorcontrib>Wigneshweraraj, Sivaramesh</creatorcontrib><creatorcontrib>Bundy, Jacob G</creatorcontrib><creatorcontrib>Buck, Martin</creatorcontrib><title>Nitrogen and carbon status are integrated at the transcriptional level by the nitrogen regulator NtrC in vivo</title><title>mBio</title><addtitle>mBio</addtitle><description>Nitrogen regulation in Escherichia coli is a model system for gene regulation in bacteria. Growth on glutamine as a sole nitrogen source is assumed to be nitrogen limiting, inferred from slow growth and strong NtrB/NtrC-dependent gene activation. However, we show that under these conditions, the intracellular glutamine concentration is not limiting but 5.6-fold higher than in ammonium-replete conditions; in addition, α-ketoglutarate concentrations are elevated. We address this glutamine paradox from a systems perspective. We show that the dominant role of NtrC is to regulate glnA transcription and its own expression, indicating that the glutamine paradox is not due to NtrC-independent gene regulation. The absolute intracellular NtrC and GS concentrations reveal molecular control parameters, where NtrC-specific activities were highest in nitrogen-starved cells, while under glutamine growth, NtrC showed intermediate specific activity. We propose an in vivo model in which α-ketoglutarate can derepress nitrogen regulation despite nitrogen sufficiency. Nitrogen is the most important nutrient for cell growth after carbon, and its metabolism is coordinated at the metabolic, transcriptional, and protein levels. We show that growth on glutamine as a sole nitrogen source, commonly assumed to be nitrogen limiting and used as such as a model system for nitrogen limitation, is in fact nitrogen replete. Our integrative quantitative analysis of key molecules involved in nitrogen assimilation and regulation reveal that glutamine is not necessarily the dominant molecule signaling nitrogen sufficiency and that α-ketoglutarate may play a more important role in signaling nitrogen status. NtrB/NtrC integrates α-ketoglutarate and glutamine signaling--sensed by the UTase (glnD) and PII (glnB), respectively--and regulates the nitrogen response through self-regulated expression and phosphorylation-dependent activation of the nitrogen (ntr) regulon. Our findings support α-ketoglutarate acting as a global regulatory metabolite.</description><subject>alpha-ketoglutaric acid</subject><subject>Ammonium Compounds - metabolism</subject><subject>bacteria</subject><subject>carbon</subject><subject>Carbon - metabolism</subject><subject>cell growth</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>gene activation</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>glutamine</subject><subject>Glutamine - metabolism</subject><subject>metabolism</subject><subject>metabolites</subject><subject>nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>PII Nitrogen Regulatory Proteins - metabolism</subject><subject>quantitative analysis</subject><subject>regulon</subject><subject>transcription (genetics)</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>2161-2129</issn><issn>2150-7511</issn><issn>2150-7511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1rGzEQxUVoaELiY69Bx1420Yyk_bgUWtMkhZBekrOQZK2tsiu5ktaQ_77rxA7tqXOZgXn8eI9HyCdg1wDY3ozffLxmrG2hAn5CzhEkqxoJ8GF_11AhYHdGFjn_YvNwDi1nH8kZCpQSUJ6T8dGXFNcuUB1W1OpkYqC56DJlqpOjPhS3Trq4FdWFlo2jJemQbfLb4mPQAx3czg3UvLw-w5GW3HoadImJPpa0nDF053fxkpz2eshucdgX5Pn2-9Pyvnr4efdj-fWhsgJZqWoH1krUveiENWhBAOPtCudkDfaM9RaxlWBMJ-rO9FL2TScbaeqaoUFEfkG-vHG3kxndyrowux7UNvlRpxcVtVf_foLfqHXcKd42DAWfAZ8PgBR_Ty4XNfps3TDo4OKUFTSiFqyWTPxfKmrgAkHIWVq9SW2KOSfXvzsCpvaFqn2h6rVQBXsXV3_HeFcf6-N_ADbRnNE</recordid><startdate>20131119</startdate><enddate>20131119</enddate><creator>Schumacher, Jörg</creator><creator>Behrends, Volker</creator><creator>Pan, Zhensheng</creator><creator>Brown, Dan R</creator><creator>Heydenreich, Franziska</creator><creator>Lewis, Matthew R</creator><creator>Bennett, Mark H</creator><creator>Razzaghi, Banafsheh</creator><creator>Komorowski, Michal</creator><creator>Barahona, Mauricio</creator><creator>Stumpf, Michael P H</creator><creator>Wigneshweraraj, Sivaramesh</creator><creator>Bundy, Jacob G</creator><creator>Buck, Martin</creator><general>American Society of Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20131119</creationdate><title>Nitrogen and carbon status are integrated at the transcriptional level by the nitrogen regulator NtrC in vivo</title><author>Schumacher, Jörg ; Behrends, Volker ; Pan, Zhensheng ; Brown, Dan R ; Heydenreich, Franziska ; Lewis, Matthew R ; Bennett, Mark H ; Razzaghi, Banafsheh ; Komorowski, Michal ; Barahona, Mauricio ; Stumpf, Michael P H ; Wigneshweraraj, Sivaramesh ; Bundy, Jacob G ; Buck, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-6e1cc52af494cb2c141038d275172f00fc22851bb9469bf55f79575b6602b2223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>alpha-ketoglutaric acid</topic><topic>Ammonium Compounds - metabolism</topic><topic>bacteria</topic><topic>carbon</topic><topic>Carbon - metabolism</topic><topic>cell growth</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>gene activation</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>glutamine</topic><topic>Glutamine - metabolism</topic><topic>metabolism</topic><topic>metabolites</topic><topic>nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>PII Nitrogen Regulatory Proteins - metabolism</topic><topic>quantitative analysis</topic><topic>regulon</topic><topic>transcription (genetics)</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schumacher, Jörg</creatorcontrib><creatorcontrib>Behrends, Volker</creatorcontrib><creatorcontrib>Pan, Zhensheng</creatorcontrib><creatorcontrib>Brown, Dan R</creatorcontrib><creatorcontrib>Heydenreich, Franziska</creatorcontrib><creatorcontrib>Lewis, Matthew R</creatorcontrib><creatorcontrib>Bennett, Mark H</creatorcontrib><creatorcontrib>Razzaghi, Banafsheh</creatorcontrib><creatorcontrib>Komorowski, Michal</creatorcontrib><creatorcontrib>Barahona, Mauricio</creatorcontrib><creatorcontrib>Stumpf, Michael P H</creatorcontrib><creatorcontrib>Wigneshweraraj, Sivaramesh</creatorcontrib><creatorcontrib>Bundy, Jacob G</creatorcontrib><creatorcontrib>Buck, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>mBio</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schumacher, Jörg</au><au>Behrends, Volker</au><au>Pan, Zhensheng</au><au>Brown, Dan R</au><au>Heydenreich, Franziska</au><au>Lewis, Matthew R</au><au>Bennett, Mark H</au><au>Razzaghi, Banafsheh</au><au>Komorowski, Michal</au><au>Barahona, Mauricio</au><au>Stumpf, Michael P H</au><au>Wigneshweraraj, Sivaramesh</au><au>Bundy, Jacob G</au><au>Buck, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen and carbon status are integrated at the transcriptional level by the nitrogen regulator NtrC in vivo</atitle><jtitle>mBio</jtitle><addtitle>mBio</addtitle><date>2013-11-19</date><risdate>2013</risdate><volume>4</volume><issue>6</issue><spage>e00881</spage><epage>e00813</epage><pages>e00881-e00813</pages><issn>2161-2129</issn><issn>2150-7511</issn><eissn>2150-7511</eissn><abstract>Nitrogen regulation in Escherichia coli is a model system for gene regulation in bacteria. Growth on glutamine as a sole nitrogen source is assumed to be nitrogen limiting, inferred from slow growth and strong NtrB/NtrC-dependent gene activation. However, we show that under these conditions, the intracellular glutamine concentration is not limiting but 5.6-fold higher than in ammonium-replete conditions; in addition, α-ketoglutarate concentrations are elevated. We address this glutamine paradox from a systems perspective. We show that the dominant role of NtrC is to regulate glnA transcription and its own expression, indicating that the glutamine paradox is not due to NtrC-independent gene regulation. The absolute intracellular NtrC and GS concentrations reveal molecular control parameters, where NtrC-specific activities were highest in nitrogen-starved cells, while under glutamine growth, NtrC showed intermediate specific activity. We propose an in vivo model in which α-ketoglutarate can derepress nitrogen regulation despite nitrogen sufficiency. Nitrogen is the most important nutrient for cell growth after carbon, and its metabolism is coordinated at the metabolic, transcriptional, and protein levels. We show that growth on glutamine as a sole nitrogen source, commonly assumed to be nitrogen limiting and used as such as a model system for nitrogen limitation, is in fact nitrogen replete. Our integrative quantitative analysis of key molecules involved in nitrogen assimilation and regulation reveal that glutamine is not necessarily the dominant molecule signaling nitrogen sufficiency and that α-ketoglutarate may play a more important role in signaling nitrogen status. NtrB/NtrC integrates α-ketoglutarate and glutamine signaling--sensed by the UTase (glnD) and PII (glnB), respectively--and regulates the nitrogen response through self-regulated expression and phosphorylation-dependent activation of the nitrogen (ntr) regulon. Our findings support α-ketoglutarate acting as a global regulatory metabolite.</abstract><cop>United States</cop><pub>American Society of Microbiology</pub><pmid>24255125</pmid><doi>10.1128/mBio.00881-13</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2161-2129
ispartof mBio, 2013-11, Vol.4 (6), p.e00881-e00813
issn 2161-2129
2150-7511
2150-7511
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3870243
source MEDLINE; DOAJ Directory of Open Access Journals; American Society for Microbiology Journals; PubMed Central; EZB Electronic Journals Library; PubMed Central Open Access
subjects alpha-ketoglutaric acid
Ammonium Compounds - metabolism
bacteria
carbon
Carbon - metabolism
cell growth
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - metabolism
gene activation
Gene Expression Regulation, Bacterial
glutamine
Glutamine - metabolism
metabolism
metabolites
nitrogen
Nitrogen - metabolism
PII Nitrogen Regulatory Proteins - metabolism
quantitative analysis
regulon
transcription (genetics)
Transcription Factors - metabolism
Transcription, Genetic
title Nitrogen and carbon status are integrated at the transcriptional level by the nitrogen regulator NtrC in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20and%20carbon%20status%20are%20integrated%20at%20the%20transcriptional%20level%20by%20the%20nitrogen%20regulator%20NtrC%20in%20vivo&rft.jtitle=mBio&rft.au=Schumacher,%20J%C3%B6rg&rft.date=2013-11-19&rft.volume=4&rft.issue=6&rft.spage=e00881&rft.epage=e00813&rft.pages=e00881-e00813&rft.issn=2161-2129&rft.eissn=2150-7511&rft_id=info:doi/10.1128/mBio.00881-13&rft_dat=%3Cproquest_pubme%3E1746406504%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1461342145&rft_id=info:pmid/24255125&rfr_iscdi=true