Kinetic Flux Profiling Elucidates Two Independent Acetyl-CoA Biosynthetic Pathways in Plasmodium falciparum
The malaria parasite Plasmodium falciparum depends on glucose to meet its energy requirements during blood-stage development. Although glycolysis is one of the best understood pathways in the parasite, it is unclear if glucose metabolism appreciably contributes to the acetyl-CoA pools required for t...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2013-12, Vol.288 (51), p.36338-36350 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36350 |
---|---|
container_issue | 51 |
container_start_page | 36338 |
container_title | The Journal of biological chemistry |
container_volume | 288 |
creator | Cobbold, Simon A. Vaughan, Ashley M. Lewis, Ian A. Painter, Heather J. Camargo, Nelly Perlman, David H. Fishbaugher, Matthew Healer, Julie Cowman, Alan F. Kappe, Stefan H.I. Llinás, Manuel |
description | The malaria parasite Plasmodium falciparum depends on glucose to meet its energy requirements during blood-stage development. Although glycolysis is one of the best understood pathways in the parasite, it is unclear if glucose metabolism appreciably contributes to the acetyl-CoA pools required for tricarboxylic acid metabolism (TCA) cycle and fatty acid biosynthesis. P. falciparum possesses a pyruvate dehydrogenase (PDH) complex that is localized to the apicoplast, a specialized quadruple membrane organelle, suggesting that separate acetyl-CoA pools are likely. Herein, we analyze PDH-deficient parasites using rapid stable-isotope labeling and show that PDH does not appreciably contribute to acetyl-CoA synthesis, tricarboxylic acid metabolism, or fatty acid synthesis in blood stage parasites. Rather, we find that acetyl-CoA demands are supplied through a “PDH-like” enzyme and provide evidence that the branched-chain keto acid dehydrogenase (BCKDH) complex is performing this function. We also show that acetyl-CoA synthetase can be a significant contributor to acetyl-CoA biosynthesis. Interestingly, the PDH-like pathway contributes glucose-derived acetyl-CoA to the TCA cycle in a stage-independent process, whereas anapleurotic carbon enters the TCA cycle via a stage-dependent phosphoenolpyruvate carboxylase/phosphoenolpyruvate carboxykinase process that decreases as the parasite matures. Although PDH-deficient parasites have no blood-stage growth defect, they are unable to progress beyond the oocyst phase of the parasite mosquito stage.
Background: The acetyl-CoA biosynthetic pathways of the malaria parasite are unclear.
Results:13C-Labeling experiments in parasites lacking a functional pyruvate dehydrogenase (PDH) complex show that the PDH does not contribute significantly to the acetyl-CoA pool.
Conclusion: The majority of acetyl-CoA biosynthesis in the parasite derives from a PDH-like enzyme and acetyl-CoA synthetase.
Significance: The two routes for acetyl-CoA synthesis appear to have separate functions. |
doi_str_mv | 10.1074/jbc.M113.503557 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3868748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820553295</els_id><sourcerecordid>1490735347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-f9f9c4c9b51e12c817dcab3d817f288981206f22627f8b3e393117aeddf67a863</originalsourceid><addsrcrecordid>eNp1kc1vFCEYh4mxsWv17M1w9DJbPmYGuJism1Yb27iHmngjDLx0qTPDCjOt-99L3droQQ58hOd9eMMPoTeULCkR9eltZ5dXlPJlQ3jTiGdoQYnkFW_ot-doQQijlWKNPEYvc74lZdSKvkDHrKYt54It0PfPYYQpWHzezz_xJkUf-jDe4LN-tsGZCTK-vo_4YnSwgzKNE15ZmPZ9tY4r_CHEvB-n7W_Dxkzbe7PPOIx405s8RBfmAXvT27AzaR5eoaNyyPD6cT1BX8_PrtefqssvHy_Wq8vKNkRNlVde2dqqrqFAmZVUOGs67srGMymVpIy0nrGWCS87DlxxSoUB53wrjGz5CXp_8O7mbgBnS9PJ9HqXwmDSXkcT9L83Y9jqm3inuWylqGURvHsUpPhjhjzpIWQLfW9GiHPWtFZE8IbXoqCnB9SmmHMC__QMJfohIl0i0g8R6UNEpeLt39098X8yKYA6AFD-6C5A0tkGGC24kMBO2sXwX_kv9RKinQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490735347</pqid></control><display><type>article</type><title>Kinetic Flux Profiling Elucidates Two Independent Acetyl-CoA Biosynthetic Pathways in Plasmodium falciparum</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Cobbold, Simon A. ; Vaughan, Ashley M. ; Lewis, Ian A. ; Painter, Heather J. ; Camargo, Nelly ; Perlman, David H. ; Fishbaugher, Matthew ; Healer, Julie ; Cowman, Alan F. ; Kappe, Stefan H.I. ; Llinás, Manuel</creator><creatorcontrib>Cobbold, Simon A. ; Vaughan, Ashley M. ; Lewis, Ian A. ; Painter, Heather J. ; Camargo, Nelly ; Perlman, David H. ; Fishbaugher, Matthew ; Healer, Julie ; Cowman, Alan F. ; Kappe, Stefan H.I. ; Llinás, Manuel</creatorcontrib><description>The malaria parasite Plasmodium falciparum depends on glucose to meet its energy requirements during blood-stage development. Although glycolysis is one of the best understood pathways in the parasite, it is unclear if glucose metabolism appreciably contributes to the acetyl-CoA pools required for tricarboxylic acid metabolism (TCA) cycle and fatty acid biosynthesis. P. falciparum possesses a pyruvate dehydrogenase (PDH) complex that is localized to the apicoplast, a specialized quadruple membrane organelle, suggesting that separate acetyl-CoA pools are likely. Herein, we analyze PDH-deficient parasites using rapid stable-isotope labeling and show that PDH does not appreciably contribute to acetyl-CoA synthesis, tricarboxylic acid metabolism, or fatty acid synthesis in blood stage parasites. Rather, we find that acetyl-CoA demands are supplied through a “PDH-like” enzyme and provide evidence that the branched-chain keto acid dehydrogenase (BCKDH) complex is performing this function. We also show that acetyl-CoA synthetase can be a significant contributor to acetyl-CoA biosynthesis. Interestingly, the PDH-like pathway contributes glucose-derived acetyl-CoA to the TCA cycle in a stage-independent process, whereas anapleurotic carbon enters the TCA cycle via a stage-dependent phosphoenolpyruvate carboxylase/phosphoenolpyruvate carboxykinase process that decreases as the parasite matures. Although PDH-deficient parasites have no blood-stage growth defect, they are unable to progress beyond the oocyst phase of the parasite mosquito stage.
Background: The acetyl-CoA biosynthetic pathways of the malaria parasite are unclear.
Results:13C-Labeling experiments in parasites lacking a functional pyruvate dehydrogenase (PDH) complex show that the PDH does not contribute significantly to the acetyl-CoA pool.
Conclusion: The majority of acetyl-CoA biosynthesis in the parasite derives from a PDH-like enzyme and acetyl-CoA synthetase.
Significance: The two routes for acetyl-CoA synthesis appear to have separate functions.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M113.503557</identifier><identifier>PMID: 24163372</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) - metabolism ; Acetate ; Acetate-CoA Ligase - metabolism ; Acetyl Coenzyme A ; Acetyl Coenzyme A - biosynthesis ; Animals ; Anopheles - parasitology ; Citric Acid Cycle ; Fatty Acids - metabolism ; Glycolysis ; Kinetics ; Malaria ; Metabolism ; Phosphoenolpyruvate Carboxykinase ; Phosphoenolpyruvate Carboxykinase (ATP) - metabolism ; Phosphoenolpyruvate Carboxylase - metabolism ; Plasmodium ; Plasmodium falciparum - metabolism ; Protozoan Proteins - metabolism ; Pyruvate Dehydrogenase Complex ; Pyruvate Dehydrogenase Complex - metabolism ; Tricarboxylic Acid (TCA) Cycle</subject><ispartof>The Journal of biological chemistry, 2013-12, Vol.288 (51), p.36338-36350</ispartof><rights>2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-f9f9c4c9b51e12c817dcab3d817f288981206f22627f8b3e393117aeddf67a863</citedby><cites>FETCH-LOGICAL-c509t-f9f9c4c9b51e12c817dcab3d817f288981206f22627f8b3e393117aeddf67a863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868748/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868748/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24163372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cobbold, Simon A.</creatorcontrib><creatorcontrib>Vaughan, Ashley M.</creatorcontrib><creatorcontrib>Lewis, Ian A.</creatorcontrib><creatorcontrib>Painter, Heather J.</creatorcontrib><creatorcontrib>Camargo, Nelly</creatorcontrib><creatorcontrib>Perlman, David H.</creatorcontrib><creatorcontrib>Fishbaugher, Matthew</creatorcontrib><creatorcontrib>Healer, Julie</creatorcontrib><creatorcontrib>Cowman, Alan F.</creatorcontrib><creatorcontrib>Kappe, Stefan H.I.</creatorcontrib><creatorcontrib>Llinás, Manuel</creatorcontrib><title>Kinetic Flux Profiling Elucidates Two Independent Acetyl-CoA Biosynthetic Pathways in Plasmodium falciparum</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The malaria parasite Plasmodium falciparum depends on glucose to meet its energy requirements during blood-stage development. Although glycolysis is one of the best understood pathways in the parasite, it is unclear if glucose metabolism appreciably contributes to the acetyl-CoA pools required for tricarboxylic acid metabolism (TCA) cycle and fatty acid biosynthesis. P. falciparum possesses a pyruvate dehydrogenase (PDH) complex that is localized to the apicoplast, a specialized quadruple membrane organelle, suggesting that separate acetyl-CoA pools are likely. Herein, we analyze PDH-deficient parasites using rapid stable-isotope labeling and show that PDH does not appreciably contribute to acetyl-CoA synthesis, tricarboxylic acid metabolism, or fatty acid synthesis in blood stage parasites. Rather, we find that acetyl-CoA demands are supplied through a “PDH-like” enzyme and provide evidence that the branched-chain keto acid dehydrogenase (BCKDH) complex is performing this function. We also show that acetyl-CoA synthetase can be a significant contributor to acetyl-CoA biosynthesis. Interestingly, the PDH-like pathway contributes glucose-derived acetyl-CoA to the TCA cycle in a stage-independent process, whereas anapleurotic carbon enters the TCA cycle via a stage-dependent phosphoenolpyruvate carboxylase/phosphoenolpyruvate carboxykinase process that decreases as the parasite matures. Although PDH-deficient parasites have no blood-stage growth defect, they are unable to progress beyond the oocyst phase of the parasite mosquito stage.
Background: The acetyl-CoA biosynthetic pathways of the malaria parasite are unclear.
Results:13C-Labeling experiments in parasites lacking a functional pyruvate dehydrogenase (PDH) complex show that the PDH does not contribute significantly to the acetyl-CoA pool.
Conclusion: The majority of acetyl-CoA biosynthesis in the parasite derives from a PDH-like enzyme and acetyl-CoA synthetase.
Significance: The two routes for acetyl-CoA synthesis appear to have separate functions.</description><subject>3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) - metabolism</subject><subject>Acetate</subject><subject>Acetate-CoA Ligase - metabolism</subject><subject>Acetyl Coenzyme A</subject><subject>Acetyl Coenzyme A - biosynthesis</subject><subject>Animals</subject><subject>Anopheles - parasitology</subject><subject>Citric Acid Cycle</subject><subject>Fatty Acids - metabolism</subject><subject>Glycolysis</subject><subject>Kinetics</subject><subject>Malaria</subject><subject>Metabolism</subject><subject>Phosphoenolpyruvate Carboxykinase</subject><subject>Phosphoenolpyruvate Carboxykinase (ATP) - metabolism</subject><subject>Phosphoenolpyruvate Carboxylase - metabolism</subject><subject>Plasmodium</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Protozoan Proteins - metabolism</subject><subject>Pyruvate Dehydrogenase Complex</subject><subject>Pyruvate Dehydrogenase Complex - metabolism</subject><subject>Tricarboxylic Acid (TCA) Cycle</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1vFCEYh4mxsWv17M1w9DJbPmYGuJism1Yb27iHmngjDLx0qTPDCjOt-99L3droQQ58hOd9eMMPoTeULCkR9eltZ5dXlPJlQ3jTiGdoQYnkFW_ot-doQQijlWKNPEYvc74lZdSKvkDHrKYt54It0PfPYYQpWHzezz_xJkUf-jDe4LN-tsGZCTK-vo_4YnSwgzKNE15ZmPZ9tY4r_CHEvB-n7W_Dxkzbe7PPOIx405s8RBfmAXvT27AzaR5eoaNyyPD6cT1BX8_PrtefqssvHy_Wq8vKNkRNlVde2dqqrqFAmZVUOGs67srGMymVpIy0nrGWCS87DlxxSoUB53wrjGz5CXp_8O7mbgBnS9PJ9HqXwmDSXkcT9L83Y9jqm3inuWylqGURvHsUpPhjhjzpIWQLfW9GiHPWtFZE8IbXoqCnB9SmmHMC__QMJfohIl0i0g8R6UNEpeLt39098X8yKYA6AFD-6C5A0tkGGC24kMBO2sXwX_kv9RKinQ</recordid><startdate>20131220</startdate><enddate>20131220</enddate><creator>Cobbold, Simon A.</creator><creator>Vaughan, Ashley M.</creator><creator>Lewis, Ian A.</creator><creator>Painter, Heather J.</creator><creator>Camargo, Nelly</creator><creator>Perlman, David H.</creator><creator>Fishbaugher, Matthew</creator><creator>Healer, Julie</creator><creator>Cowman, Alan F.</creator><creator>Kappe, Stefan H.I.</creator><creator>Llinás, Manuel</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131220</creationdate><title>Kinetic Flux Profiling Elucidates Two Independent Acetyl-CoA Biosynthetic Pathways in Plasmodium falciparum</title><author>Cobbold, Simon A. ; Vaughan, Ashley M. ; Lewis, Ian A. ; Painter, Heather J. ; Camargo, Nelly ; Perlman, David H. ; Fishbaugher, Matthew ; Healer, Julie ; Cowman, Alan F. ; Kappe, Stefan H.I. ; Llinás, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-f9f9c4c9b51e12c817dcab3d817f288981206f22627f8b3e393117aeddf67a863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) - metabolism</topic><topic>Acetate</topic><topic>Acetate-CoA Ligase - metabolism</topic><topic>Acetyl Coenzyme A</topic><topic>Acetyl Coenzyme A - biosynthesis</topic><topic>Animals</topic><topic>Anopheles - parasitology</topic><topic>Citric Acid Cycle</topic><topic>Fatty Acids - metabolism</topic><topic>Glycolysis</topic><topic>Kinetics</topic><topic>Malaria</topic><topic>Metabolism</topic><topic>Phosphoenolpyruvate Carboxykinase</topic><topic>Phosphoenolpyruvate Carboxykinase (ATP) - metabolism</topic><topic>Phosphoenolpyruvate Carboxylase - metabolism</topic><topic>Plasmodium</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Protozoan Proteins - metabolism</topic><topic>Pyruvate Dehydrogenase Complex</topic><topic>Pyruvate Dehydrogenase Complex - metabolism</topic><topic>Tricarboxylic Acid (TCA) Cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cobbold, Simon A.</creatorcontrib><creatorcontrib>Vaughan, Ashley M.</creatorcontrib><creatorcontrib>Lewis, Ian A.</creatorcontrib><creatorcontrib>Painter, Heather J.</creatorcontrib><creatorcontrib>Camargo, Nelly</creatorcontrib><creatorcontrib>Perlman, David H.</creatorcontrib><creatorcontrib>Fishbaugher, Matthew</creatorcontrib><creatorcontrib>Healer, Julie</creatorcontrib><creatorcontrib>Cowman, Alan F.</creatorcontrib><creatorcontrib>Kappe, Stefan H.I.</creatorcontrib><creatorcontrib>Llinás, Manuel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cobbold, Simon A.</au><au>Vaughan, Ashley M.</au><au>Lewis, Ian A.</au><au>Painter, Heather J.</au><au>Camargo, Nelly</au><au>Perlman, David H.</au><au>Fishbaugher, Matthew</au><au>Healer, Julie</au><au>Cowman, Alan F.</au><au>Kappe, Stefan H.I.</au><au>Llinás, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Flux Profiling Elucidates Two Independent Acetyl-CoA Biosynthetic Pathways in Plasmodium falciparum</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2013-12-20</date><risdate>2013</risdate><volume>288</volume><issue>51</issue><spage>36338</spage><epage>36350</epage><pages>36338-36350</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The malaria parasite Plasmodium falciparum depends on glucose to meet its energy requirements during blood-stage development. Although glycolysis is one of the best understood pathways in the parasite, it is unclear if glucose metabolism appreciably contributes to the acetyl-CoA pools required for tricarboxylic acid metabolism (TCA) cycle and fatty acid biosynthesis. P. falciparum possesses a pyruvate dehydrogenase (PDH) complex that is localized to the apicoplast, a specialized quadruple membrane organelle, suggesting that separate acetyl-CoA pools are likely. Herein, we analyze PDH-deficient parasites using rapid stable-isotope labeling and show that PDH does not appreciably contribute to acetyl-CoA synthesis, tricarboxylic acid metabolism, or fatty acid synthesis in blood stage parasites. Rather, we find that acetyl-CoA demands are supplied through a “PDH-like” enzyme and provide evidence that the branched-chain keto acid dehydrogenase (BCKDH) complex is performing this function. We also show that acetyl-CoA synthetase can be a significant contributor to acetyl-CoA biosynthesis. Interestingly, the PDH-like pathway contributes glucose-derived acetyl-CoA to the TCA cycle in a stage-independent process, whereas anapleurotic carbon enters the TCA cycle via a stage-dependent phosphoenolpyruvate carboxylase/phosphoenolpyruvate carboxykinase process that decreases as the parasite matures. Although PDH-deficient parasites have no blood-stage growth defect, they are unable to progress beyond the oocyst phase of the parasite mosquito stage.
Background: The acetyl-CoA biosynthetic pathways of the malaria parasite are unclear.
Results:13C-Labeling experiments in parasites lacking a functional pyruvate dehydrogenase (PDH) complex show that the PDH does not contribute significantly to the acetyl-CoA pool.
Conclusion: The majority of acetyl-CoA biosynthesis in the parasite derives from a PDH-like enzyme and acetyl-CoA synthetase.
Significance: The two routes for acetyl-CoA synthesis appear to have separate functions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24163372</pmid><doi>10.1074/jbc.M113.503557</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2013-12, Vol.288 (51), p.36338-36350 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3868748 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) - metabolism Acetate Acetate-CoA Ligase - metabolism Acetyl Coenzyme A Acetyl Coenzyme A - biosynthesis Animals Anopheles - parasitology Citric Acid Cycle Fatty Acids - metabolism Glycolysis Kinetics Malaria Metabolism Phosphoenolpyruvate Carboxykinase Phosphoenolpyruvate Carboxykinase (ATP) - metabolism Phosphoenolpyruvate Carboxylase - metabolism Plasmodium Plasmodium falciparum - metabolism Protozoan Proteins - metabolism Pyruvate Dehydrogenase Complex Pyruvate Dehydrogenase Complex - metabolism Tricarboxylic Acid (TCA) Cycle |
title | Kinetic Flux Profiling Elucidates Two Independent Acetyl-CoA Biosynthetic Pathways in Plasmodium falciparum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Flux%20Profiling%20Elucidates%20Two%20Independent%20Acetyl-CoA%20Biosynthetic%20Pathways%20in%20Plasmodium%20falciparum&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Cobbold,%20Simon%20A.&rft.date=2013-12-20&rft.volume=288&rft.issue=51&rft.spage=36338&rft.epage=36350&rft.pages=36338-36350&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M113.503557&rft_dat=%3Cproquest_pubme%3E1490735347%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490735347&rft_id=info:pmid/24163372&rft_els_id=S0021925820553295&rfr_iscdi=true |