Kinetic Flux Profiling Elucidates Two Independent Acetyl-CoA Biosynthetic Pathways in Plasmodium falciparum

The malaria parasite Plasmodium falciparum depends on glucose to meet its energy requirements during blood-stage development. Although glycolysis is one of the best understood pathways in the parasite, it is unclear if glucose metabolism appreciably contributes to the acetyl-CoA pools required for t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2013-12, Vol.288 (51), p.36338-36350
Hauptverfasser: Cobbold, Simon A., Vaughan, Ashley M., Lewis, Ian A., Painter, Heather J., Camargo, Nelly, Perlman, David H., Fishbaugher, Matthew, Healer, Julie, Cowman, Alan F., Kappe, Stefan H.I., Llinás, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36350
container_issue 51
container_start_page 36338
container_title The Journal of biological chemistry
container_volume 288
creator Cobbold, Simon A.
Vaughan, Ashley M.
Lewis, Ian A.
Painter, Heather J.
Camargo, Nelly
Perlman, David H.
Fishbaugher, Matthew
Healer, Julie
Cowman, Alan F.
Kappe, Stefan H.I.
Llinás, Manuel
description The malaria parasite Plasmodium falciparum depends on glucose to meet its energy requirements during blood-stage development. Although glycolysis is one of the best understood pathways in the parasite, it is unclear if glucose metabolism appreciably contributes to the acetyl-CoA pools required for tricarboxylic acid metabolism (TCA) cycle and fatty acid biosynthesis. P. falciparum possesses a pyruvate dehydrogenase (PDH) complex that is localized to the apicoplast, a specialized quadruple membrane organelle, suggesting that separate acetyl-CoA pools are likely. Herein, we analyze PDH-deficient parasites using rapid stable-isotope labeling and show that PDH does not appreciably contribute to acetyl-CoA synthesis, tricarboxylic acid metabolism, or fatty acid synthesis in blood stage parasites. Rather, we find that acetyl-CoA demands are supplied through a “PDH-like” enzyme and provide evidence that the branched-chain keto acid dehydrogenase (BCKDH) complex is performing this function. We also show that acetyl-CoA synthetase can be a significant contributor to acetyl-CoA biosynthesis. Interestingly, the PDH-like pathway contributes glucose-derived acetyl-CoA to the TCA cycle in a stage-independent process, whereas anapleurotic carbon enters the TCA cycle via a stage-dependent phosphoenolpyruvate carboxylase/phosphoenolpyruvate carboxykinase process that decreases as the parasite matures. Although PDH-deficient parasites have no blood-stage growth defect, they are unable to progress beyond the oocyst phase of the parasite mosquito stage. Background: The acetyl-CoA biosynthetic pathways of the malaria parasite are unclear. Results:13C-Labeling experiments in parasites lacking a functional pyruvate dehydrogenase (PDH) complex show that the PDH does not contribute significantly to the acetyl-CoA pool. Conclusion: The majority of acetyl-CoA biosynthesis in the parasite derives from a PDH-like enzyme and acetyl-CoA synthetase. Significance: The two routes for acetyl-CoA synthesis appear to have separate functions.
doi_str_mv 10.1074/jbc.M113.503557
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3868748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820553295</els_id><sourcerecordid>1490735347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-f9f9c4c9b51e12c817dcab3d817f288981206f22627f8b3e393117aeddf67a863</originalsourceid><addsrcrecordid>eNp1kc1vFCEYh4mxsWv17M1w9DJbPmYGuJism1Yb27iHmngjDLx0qTPDCjOt-99L3droQQ58hOd9eMMPoTeULCkR9eltZ5dXlPJlQ3jTiGdoQYnkFW_ot-doQQijlWKNPEYvc74lZdSKvkDHrKYt54It0PfPYYQpWHzezz_xJkUf-jDe4LN-tsGZCTK-vo_4YnSwgzKNE15ZmPZ9tY4r_CHEvB-n7W_Dxkzbe7PPOIx405s8RBfmAXvT27AzaR5eoaNyyPD6cT1BX8_PrtefqssvHy_Wq8vKNkRNlVde2dqqrqFAmZVUOGs67srGMymVpIy0nrGWCS87DlxxSoUB53wrjGz5CXp_8O7mbgBnS9PJ9HqXwmDSXkcT9L83Y9jqm3inuWylqGURvHsUpPhjhjzpIWQLfW9GiHPWtFZE8IbXoqCnB9SmmHMC__QMJfohIl0i0g8R6UNEpeLt39098X8yKYA6AFD-6C5A0tkGGC24kMBO2sXwX_kv9RKinQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490735347</pqid></control><display><type>article</type><title>Kinetic Flux Profiling Elucidates Two Independent Acetyl-CoA Biosynthetic Pathways in Plasmodium falciparum</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Cobbold, Simon A. ; Vaughan, Ashley M. ; Lewis, Ian A. ; Painter, Heather J. ; Camargo, Nelly ; Perlman, David H. ; Fishbaugher, Matthew ; Healer, Julie ; Cowman, Alan F. ; Kappe, Stefan H.I. ; Llinás, Manuel</creator><creatorcontrib>Cobbold, Simon A. ; Vaughan, Ashley M. ; Lewis, Ian A. ; Painter, Heather J. ; Camargo, Nelly ; Perlman, David H. ; Fishbaugher, Matthew ; Healer, Julie ; Cowman, Alan F. ; Kappe, Stefan H.I. ; Llinás, Manuel</creatorcontrib><description>The malaria parasite Plasmodium falciparum depends on glucose to meet its energy requirements during blood-stage development. Although glycolysis is one of the best understood pathways in the parasite, it is unclear if glucose metabolism appreciably contributes to the acetyl-CoA pools required for tricarboxylic acid metabolism (TCA) cycle and fatty acid biosynthesis. P. falciparum possesses a pyruvate dehydrogenase (PDH) complex that is localized to the apicoplast, a specialized quadruple membrane organelle, suggesting that separate acetyl-CoA pools are likely. Herein, we analyze PDH-deficient parasites using rapid stable-isotope labeling and show that PDH does not appreciably contribute to acetyl-CoA synthesis, tricarboxylic acid metabolism, or fatty acid synthesis in blood stage parasites. Rather, we find that acetyl-CoA demands are supplied through a “PDH-like” enzyme and provide evidence that the branched-chain keto acid dehydrogenase (BCKDH) complex is performing this function. We also show that acetyl-CoA synthetase can be a significant contributor to acetyl-CoA biosynthesis. Interestingly, the PDH-like pathway contributes glucose-derived acetyl-CoA to the TCA cycle in a stage-independent process, whereas anapleurotic carbon enters the TCA cycle via a stage-dependent phosphoenolpyruvate carboxylase/phosphoenolpyruvate carboxykinase process that decreases as the parasite matures. Although PDH-deficient parasites have no blood-stage growth defect, they are unable to progress beyond the oocyst phase of the parasite mosquito stage. Background: The acetyl-CoA biosynthetic pathways of the malaria parasite are unclear. Results:13C-Labeling experiments in parasites lacking a functional pyruvate dehydrogenase (PDH) complex show that the PDH does not contribute significantly to the acetyl-CoA pool. Conclusion: The majority of acetyl-CoA biosynthesis in the parasite derives from a PDH-like enzyme and acetyl-CoA synthetase. Significance: The two routes for acetyl-CoA synthesis appear to have separate functions.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M113.503557</identifier><identifier>PMID: 24163372</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) - metabolism ; Acetate ; Acetate-CoA Ligase - metabolism ; Acetyl Coenzyme A ; Acetyl Coenzyme A - biosynthesis ; Animals ; Anopheles - parasitology ; Citric Acid Cycle ; Fatty Acids - metabolism ; Glycolysis ; Kinetics ; Malaria ; Metabolism ; Phosphoenolpyruvate Carboxykinase ; Phosphoenolpyruvate Carboxykinase (ATP) - metabolism ; Phosphoenolpyruvate Carboxylase - metabolism ; Plasmodium ; Plasmodium falciparum - metabolism ; Protozoan Proteins - metabolism ; Pyruvate Dehydrogenase Complex ; Pyruvate Dehydrogenase Complex - metabolism ; Tricarboxylic Acid (TCA) Cycle</subject><ispartof>The Journal of biological chemistry, 2013-12, Vol.288 (51), p.36338-36350</ispartof><rights>2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-f9f9c4c9b51e12c817dcab3d817f288981206f22627f8b3e393117aeddf67a863</citedby><cites>FETCH-LOGICAL-c509t-f9f9c4c9b51e12c817dcab3d817f288981206f22627f8b3e393117aeddf67a863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868748/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868748/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24163372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cobbold, Simon A.</creatorcontrib><creatorcontrib>Vaughan, Ashley M.</creatorcontrib><creatorcontrib>Lewis, Ian A.</creatorcontrib><creatorcontrib>Painter, Heather J.</creatorcontrib><creatorcontrib>Camargo, Nelly</creatorcontrib><creatorcontrib>Perlman, David H.</creatorcontrib><creatorcontrib>Fishbaugher, Matthew</creatorcontrib><creatorcontrib>Healer, Julie</creatorcontrib><creatorcontrib>Cowman, Alan F.</creatorcontrib><creatorcontrib>Kappe, Stefan H.I.</creatorcontrib><creatorcontrib>Llinás, Manuel</creatorcontrib><title>Kinetic Flux Profiling Elucidates Two Independent Acetyl-CoA Biosynthetic Pathways in Plasmodium falciparum</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The malaria parasite Plasmodium falciparum depends on glucose to meet its energy requirements during blood-stage development. Although glycolysis is one of the best understood pathways in the parasite, it is unclear if glucose metabolism appreciably contributes to the acetyl-CoA pools required for tricarboxylic acid metabolism (TCA) cycle and fatty acid biosynthesis. P. falciparum possesses a pyruvate dehydrogenase (PDH) complex that is localized to the apicoplast, a specialized quadruple membrane organelle, suggesting that separate acetyl-CoA pools are likely. Herein, we analyze PDH-deficient parasites using rapid stable-isotope labeling and show that PDH does not appreciably contribute to acetyl-CoA synthesis, tricarboxylic acid metabolism, or fatty acid synthesis in blood stage parasites. Rather, we find that acetyl-CoA demands are supplied through a “PDH-like” enzyme and provide evidence that the branched-chain keto acid dehydrogenase (BCKDH) complex is performing this function. We also show that acetyl-CoA synthetase can be a significant contributor to acetyl-CoA biosynthesis. Interestingly, the PDH-like pathway contributes glucose-derived acetyl-CoA to the TCA cycle in a stage-independent process, whereas anapleurotic carbon enters the TCA cycle via a stage-dependent phosphoenolpyruvate carboxylase/phosphoenolpyruvate carboxykinase process that decreases as the parasite matures. Although PDH-deficient parasites have no blood-stage growth defect, they are unable to progress beyond the oocyst phase of the parasite mosquito stage. Background: The acetyl-CoA biosynthetic pathways of the malaria parasite are unclear. Results:13C-Labeling experiments in parasites lacking a functional pyruvate dehydrogenase (PDH) complex show that the PDH does not contribute significantly to the acetyl-CoA pool. Conclusion: The majority of acetyl-CoA biosynthesis in the parasite derives from a PDH-like enzyme and acetyl-CoA synthetase. Significance: The two routes for acetyl-CoA synthesis appear to have separate functions.</description><subject>3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) - metabolism</subject><subject>Acetate</subject><subject>Acetate-CoA Ligase - metabolism</subject><subject>Acetyl Coenzyme A</subject><subject>Acetyl Coenzyme A - biosynthesis</subject><subject>Animals</subject><subject>Anopheles - parasitology</subject><subject>Citric Acid Cycle</subject><subject>Fatty Acids - metabolism</subject><subject>Glycolysis</subject><subject>Kinetics</subject><subject>Malaria</subject><subject>Metabolism</subject><subject>Phosphoenolpyruvate Carboxykinase</subject><subject>Phosphoenolpyruvate Carboxykinase (ATP) - metabolism</subject><subject>Phosphoenolpyruvate Carboxylase - metabolism</subject><subject>Plasmodium</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Protozoan Proteins - metabolism</subject><subject>Pyruvate Dehydrogenase Complex</subject><subject>Pyruvate Dehydrogenase Complex - metabolism</subject><subject>Tricarboxylic Acid (TCA) Cycle</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1vFCEYh4mxsWv17M1w9DJbPmYGuJism1Yb27iHmngjDLx0qTPDCjOt-99L3droQQ58hOd9eMMPoTeULCkR9eltZ5dXlPJlQ3jTiGdoQYnkFW_ot-doQQijlWKNPEYvc74lZdSKvkDHrKYt54It0PfPYYQpWHzezz_xJkUf-jDe4LN-tsGZCTK-vo_4YnSwgzKNE15ZmPZ9tY4r_CHEvB-n7W_Dxkzbe7PPOIx405s8RBfmAXvT27AzaR5eoaNyyPD6cT1BX8_PrtefqssvHy_Wq8vKNkRNlVde2dqqrqFAmZVUOGs67srGMymVpIy0nrGWCS87DlxxSoUB53wrjGz5CXp_8O7mbgBnS9PJ9HqXwmDSXkcT9L83Y9jqm3inuWylqGURvHsUpPhjhjzpIWQLfW9GiHPWtFZE8IbXoqCnB9SmmHMC__QMJfohIl0i0g8R6UNEpeLt39098X8yKYA6AFD-6C5A0tkGGC24kMBO2sXwX_kv9RKinQ</recordid><startdate>20131220</startdate><enddate>20131220</enddate><creator>Cobbold, Simon A.</creator><creator>Vaughan, Ashley M.</creator><creator>Lewis, Ian A.</creator><creator>Painter, Heather J.</creator><creator>Camargo, Nelly</creator><creator>Perlman, David H.</creator><creator>Fishbaugher, Matthew</creator><creator>Healer, Julie</creator><creator>Cowman, Alan F.</creator><creator>Kappe, Stefan H.I.</creator><creator>Llinás, Manuel</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131220</creationdate><title>Kinetic Flux Profiling Elucidates Two Independent Acetyl-CoA Biosynthetic Pathways in Plasmodium falciparum</title><author>Cobbold, Simon A. ; Vaughan, Ashley M. ; Lewis, Ian A. ; Painter, Heather J. ; Camargo, Nelly ; Perlman, David H. ; Fishbaugher, Matthew ; Healer, Julie ; Cowman, Alan F. ; Kappe, Stefan H.I. ; Llinás, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-f9f9c4c9b51e12c817dcab3d817f288981206f22627f8b3e393117aeddf67a863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) - metabolism</topic><topic>Acetate</topic><topic>Acetate-CoA Ligase - metabolism</topic><topic>Acetyl Coenzyme A</topic><topic>Acetyl Coenzyme A - biosynthesis</topic><topic>Animals</topic><topic>Anopheles - parasitology</topic><topic>Citric Acid Cycle</topic><topic>Fatty Acids - metabolism</topic><topic>Glycolysis</topic><topic>Kinetics</topic><topic>Malaria</topic><topic>Metabolism</topic><topic>Phosphoenolpyruvate Carboxykinase</topic><topic>Phosphoenolpyruvate Carboxykinase (ATP) - metabolism</topic><topic>Phosphoenolpyruvate Carboxylase - metabolism</topic><topic>Plasmodium</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Protozoan Proteins - metabolism</topic><topic>Pyruvate Dehydrogenase Complex</topic><topic>Pyruvate Dehydrogenase Complex - metabolism</topic><topic>Tricarboxylic Acid (TCA) Cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cobbold, Simon A.</creatorcontrib><creatorcontrib>Vaughan, Ashley M.</creatorcontrib><creatorcontrib>Lewis, Ian A.</creatorcontrib><creatorcontrib>Painter, Heather J.</creatorcontrib><creatorcontrib>Camargo, Nelly</creatorcontrib><creatorcontrib>Perlman, David H.</creatorcontrib><creatorcontrib>Fishbaugher, Matthew</creatorcontrib><creatorcontrib>Healer, Julie</creatorcontrib><creatorcontrib>Cowman, Alan F.</creatorcontrib><creatorcontrib>Kappe, Stefan H.I.</creatorcontrib><creatorcontrib>Llinás, Manuel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cobbold, Simon A.</au><au>Vaughan, Ashley M.</au><au>Lewis, Ian A.</au><au>Painter, Heather J.</au><au>Camargo, Nelly</au><au>Perlman, David H.</au><au>Fishbaugher, Matthew</au><au>Healer, Julie</au><au>Cowman, Alan F.</au><au>Kappe, Stefan H.I.</au><au>Llinás, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Flux Profiling Elucidates Two Independent Acetyl-CoA Biosynthetic Pathways in Plasmodium falciparum</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2013-12-20</date><risdate>2013</risdate><volume>288</volume><issue>51</issue><spage>36338</spage><epage>36350</epage><pages>36338-36350</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The malaria parasite Plasmodium falciparum depends on glucose to meet its energy requirements during blood-stage development. Although glycolysis is one of the best understood pathways in the parasite, it is unclear if glucose metabolism appreciably contributes to the acetyl-CoA pools required for tricarboxylic acid metabolism (TCA) cycle and fatty acid biosynthesis. P. falciparum possesses a pyruvate dehydrogenase (PDH) complex that is localized to the apicoplast, a specialized quadruple membrane organelle, suggesting that separate acetyl-CoA pools are likely. Herein, we analyze PDH-deficient parasites using rapid stable-isotope labeling and show that PDH does not appreciably contribute to acetyl-CoA synthesis, tricarboxylic acid metabolism, or fatty acid synthesis in blood stage parasites. Rather, we find that acetyl-CoA demands are supplied through a “PDH-like” enzyme and provide evidence that the branched-chain keto acid dehydrogenase (BCKDH) complex is performing this function. We also show that acetyl-CoA synthetase can be a significant contributor to acetyl-CoA biosynthesis. Interestingly, the PDH-like pathway contributes glucose-derived acetyl-CoA to the TCA cycle in a stage-independent process, whereas anapleurotic carbon enters the TCA cycle via a stage-dependent phosphoenolpyruvate carboxylase/phosphoenolpyruvate carboxykinase process that decreases as the parasite matures. Although PDH-deficient parasites have no blood-stage growth defect, they are unable to progress beyond the oocyst phase of the parasite mosquito stage. Background: The acetyl-CoA biosynthetic pathways of the malaria parasite are unclear. Results:13C-Labeling experiments in parasites lacking a functional pyruvate dehydrogenase (PDH) complex show that the PDH does not contribute significantly to the acetyl-CoA pool. Conclusion: The majority of acetyl-CoA biosynthesis in the parasite derives from a PDH-like enzyme and acetyl-CoA synthetase. Significance: The two routes for acetyl-CoA synthesis appear to have separate functions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24163372</pmid><doi>10.1074/jbc.M113.503557</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2013-12, Vol.288 (51), p.36338-36350
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3868748
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) - metabolism
Acetate
Acetate-CoA Ligase - metabolism
Acetyl Coenzyme A
Acetyl Coenzyme A - biosynthesis
Animals
Anopheles - parasitology
Citric Acid Cycle
Fatty Acids - metabolism
Glycolysis
Kinetics
Malaria
Metabolism
Phosphoenolpyruvate Carboxykinase
Phosphoenolpyruvate Carboxykinase (ATP) - metabolism
Phosphoenolpyruvate Carboxylase - metabolism
Plasmodium
Plasmodium falciparum - metabolism
Protozoan Proteins - metabolism
Pyruvate Dehydrogenase Complex
Pyruvate Dehydrogenase Complex - metabolism
Tricarboxylic Acid (TCA) Cycle
title Kinetic Flux Profiling Elucidates Two Independent Acetyl-CoA Biosynthetic Pathways in Plasmodium falciparum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Flux%20Profiling%20Elucidates%20Two%20Independent%20Acetyl-CoA%20Biosynthetic%20Pathways%20in%20Plasmodium%20falciparum&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Cobbold,%20Simon%20A.&rft.date=2013-12-20&rft.volume=288&rft.issue=51&rft.spage=36338&rft.epage=36350&rft.pages=36338-36350&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M113.503557&rft_dat=%3Cproquest_pubme%3E1490735347%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490735347&rft_id=info:pmid/24163372&rft_els_id=S0021925820553295&rfr_iscdi=true