In vivo three-photon microscopy of subcortical structures within an intact mouse brain

Two-photon fluorescence microscopy 1 enables scientists in various fields including neuroscience 2 , 3 , embryology 4 and oncology 5 to visualize in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissue. However, tissue scattering limits the maximum imag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2013-03, Vol.7 (3), p.205-209
Hauptverfasser: Horton, Nicholas G., Wang, Ke, Kobat, Demirhan, Clark, Catharine G., Wise, Frank W., Schaffer, Chris B., Xu, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 209
container_issue 3
container_start_page 205
container_title Nature photonics
container_volume 7
creator Horton, Nicholas G.
Wang, Ke
Kobat, Demirhan
Clark, Catharine G.
Wise, Frank W.
Schaffer, Chris B.
Xu, Chris
description Two-photon fluorescence microscopy 1 enables scientists in various fields including neuroscience 2 , 3 , embryology 4 and oncology 5 to visualize in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissue. However, tissue scattering limits the maximum imaging depth of two-photon fluorescence microscopy to the cortical layer within mouse brain, and imaging subcortical structures currently requires the removal of overlying brain tissue 3 or the insertion of optical probes 6 , 7 . Here, we demonstrate non-invasive, high-resolution, in vivo imaging of subcortical structures within an intact mouse brain using three-photon fluorescence microscopy at a spectral excitation window of 1,700 nm. Vascular structures as well as red fluorescent protein-labelled neurons within the mouse hippocampus are imaged. The combination of the long excitation wavelength and the higher-order nonlinear excitation overcomes the limitations of two-photon fluorescence microscopy, enabling biological investigations to take place at a greater depth within tissue. Three-photon microscopy performed at the infrared wavelength of 1,700 nm makes it possible to image hard-to-reach vascular structures and labelled neurons in the hippocampus of a mouse brain.
doi_str_mv 10.1038/nphoton.2012.336
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3864872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323242492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-2b2558ebf09ce3570b5f6e7dfdbd22248cf0e62809fa9ef9c0e97e4430fcad083</originalsourceid><addsrcrecordid>eNqFkc9rFDEUx4MotlbvniTgxcus-TUzyUWQorZQ8KJeQybz0k2ZSdYks9L_vhl2XaognhJ4n_dJ3vsi9JqSDSVcvg-7bSwxbBihbMN59wSd016oRkjFn57usj1DL3K-I6TlirHn6IwJ3vJe8HP04zrgvd9HXLYJoDn48OxtitnG3T2ODudlsDEVb82Ec0mLLUuCjH_5svUBm4B9KMYWPMclAx6S8eEleubMlOHV8bxA3z9_-nZ51dx8_XJ9-fGmsR1lpWEDa1sJgyPKAm97MrSug3504zAyxoS0jkDHJFHOKHDKElA9CMGJs2Ykkl-gDwfvbhlmGC2Eksykd8nPJt3raLz-sxL8Vt_GveayE7JnVfDuKEjx5wK56NlnC9NkAtRxNJWsa-umKP0_yhlnggm1Wt_-hd7FJYW6iUqtnFRiFZIDtS47J3Cnf1Oi13z1MV-95qtrvrXlzeN5Tw2_A60APQC5lsItpEcv_0v6ANdhtZY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313238941</pqid></control><display><type>article</type><title>In vivo three-photon microscopy of subcortical structures within an intact mouse brain</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Horton, Nicholas G. ; Wang, Ke ; Kobat, Demirhan ; Clark, Catharine G. ; Wise, Frank W. ; Schaffer, Chris B. ; Xu, Chris</creator><creatorcontrib>Horton, Nicholas G. ; Wang, Ke ; Kobat, Demirhan ; Clark, Catharine G. ; Wise, Frank W. ; Schaffer, Chris B. ; Xu, Chris</creatorcontrib><description>Two-photon fluorescence microscopy 1 enables scientists in various fields including neuroscience 2 , 3 , embryology 4 and oncology 5 to visualize in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissue. However, tissue scattering limits the maximum imaging depth of two-photon fluorescence microscopy to the cortical layer within mouse brain, and imaging subcortical structures currently requires the removal of overlying brain tissue 3 or the insertion of optical probes 6 , 7 . Here, we demonstrate non-invasive, high-resolution, in vivo imaging of subcortical structures within an intact mouse brain using three-photon fluorescence microscopy at a spectral excitation window of 1,700 nm. Vascular structures as well as red fluorescent protein-labelled neurons within the mouse hippocampus are imaged. The combination of the long excitation wavelength and the higher-order nonlinear excitation overcomes the limitations of two-photon fluorescence microscopy, enabling biological investigations to take place at a greater depth within tissue. Three-photon microscopy performed at the infrared wavelength of 1,700 nm makes it possible to image hard-to-reach vascular structures and labelled neurons in the hippocampus of a mouse brain.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/nphoton.2012.336</identifier><identifier>PMID: 24353743</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1107/328/2057 ; 639/624/1111/55 ; Applied and Technical Physics ; Embryology ; Fluorescence ; Fluorescence microscopy ; letter ; Microscopy ; Photonics ; Physics ; Quantum Physics ; Tissues</subject><ispartof>Nature photonics, 2013-03, Vol.7 (3), p.205-209</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group Mar 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-2b2558ebf09ce3570b5f6e7dfdbd22248cf0e62809fa9ef9c0e97e4430fcad083</citedby><cites>FETCH-LOGICAL-c612t-2b2558ebf09ce3570b5f6e7dfdbd22248cf0e62809fa9ef9c0e97e4430fcad083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphoton.2012.336$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphoton.2012.336$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24353743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horton, Nicholas G.</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Kobat, Demirhan</creatorcontrib><creatorcontrib>Clark, Catharine G.</creatorcontrib><creatorcontrib>Wise, Frank W.</creatorcontrib><creatorcontrib>Schaffer, Chris B.</creatorcontrib><creatorcontrib>Xu, Chris</creatorcontrib><title>In vivo three-photon microscopy of subcortical structures within an intact mouse brain</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><addtitle>Nat Photonics</addtitle><description>Two-photon fluorescence microscopy 1 enables scientists in various fields including neuroscience 2 , 3 , embryology 4 and oncology 5 to visualize in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissue. However, tissue scattering limits the maximum imaging depth of two-photon fluorescence microscopy to the cortical layer within mouse brain, and imaging subcortical structures currently requires the removal of overlying brain tissue 3 or the insertion of optical probes 6 , 7 . Here, we demonstrate non-invasive, high-resolution, in vivo imaging of subcortical structures within an intact mouse brain using three-photon fluorescence microscopy at a spectral excitation window of 1,700 nm. Vascular structures as well as red fluorescent protein-labelled neurons within the mouse hippocampus are imaged. The combination of the long excitation wavelength and the higher-order nonlinear excitation overcomes the limitations of two-photon fluorescence microscopy, enabling biological investigations to take place at a greater depth within tissue. Three-photon microscopy performed at the infrared wavelength of 1,700 nm makes it possible to image hard-to-reach vascular structures and labelled neurons in the hippocampus of a mouse brain.</description><subject>639/624/1107/328/2057</subject><subject>639/624/1111/55</subject><subject>Applied and Technical Physics</subject><subject>Embryology</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>letter</subject><subject>Microscopy</subject><subject>Photonics</subject><subject>Physics</subject><subject>Quantum Physics</subject><subject>Tissues</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkc9rFDEUx4MotlbvniTgxcus-TUzyUWQorZQ8KJeQybz0k2ZSdYks9L_vhl2XaognhJ4n_dJ3vsi9JqSDSVcvg-7bSwxbBihbMN59wSd016oRkjFn57usj1DL3K-I6TlirHn6IwJ3vJe8HP04zrgvd9HXLYJoDn48OxtitnG3T2ODudlsDEVb82Ec0mLLUuCjH_5svUBm4B9KMYWPMclAx6S8eEleubMlOHV8bxA3z9_-nZ51dx8_XJ9-fGmsR1lpWEDa1sJgyPKAm97MrSug3504zAyxoS0jkDHJFHOKHDKElA9CMGJs2Ykkl-gDwfvbhlmGC2Eksykd8nPJt3raLz-sxL8Vt_GveayE7JnVfDuKEjx5wK56NlnC9NkAtRxNJWsa-umKP0_yhlnggm1Wt_-hd7FJYW6iUqtnFRiFZIDtS47J3Cnf1Oi13z1MV-95qtrvrXlzeN5Tw2_A60APQC5lsItpEcv_0v6ANdhtZY</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Horton, Nicholas G.</creator><creator>Wang, Ke</creator><creator>Kobat, Demirhan</creator><creator>Clark, Catharine G.</creator><creator>Wise, Frank W.</creator><creator>Schaffer, Chris B.</creator><creator>Xu, Chris</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130301</creationdate><title>In vivo three-photon microscopy of subcortical structures within an intact mouse brain</title><author>Horton, Nicholas G. ; Wang, Ke ; Kobat, Demirhan ; Clark, Catharine G. ; Wise, Frank W. ; Schaffer, Chris B. ; Xu, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-2b2558ebf09ce3570b5f6e7dfdbd22248cf0e62809fa9ef9c0e97e4430fcad083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/624/1107/328/2057</topic><topic>639/624/1111/55</topic><topic>Applied and Technical Physics</topic><topic>Embryology</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>letter</topic><topic>Microscopy</topic><topic>Photonics</topic><topic>Physics</topic><topic>Quantum Physics</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horton, Nicholas G.</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Kobat, Demirhan</creatorcontrib><creatorcontrib>Clark, Catharine G.</creatorcontrib><creatorcontrib>Wise, Frank W.</creatorcontrib><creatorcontrib>Schaffer, Chris B.</creatorcontrib><creatorcontrib>Xu, Chris</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horton, Nicholas G.</au><au>Wang, Ke</au><au>Kobat, Demirhan</au><au>Clark, Catharine G.</au><au>Wise, Frank W.</au><au>Schaffer, Chris B.</au><au>Xu, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo three-photon microscopy of subcortical structures within an intact mouse brain</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><addtitle>Nat Photonics</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>7</volume><issue>3</issue><spage>205</spage><epage>209</epage><pages>205-209</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Two-photon fluorescence microscopy 1 enables scientists in various fields including neuroscience 2 , 3 , embryology 4 and oncology 5 to visualize in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissue. However, tissue scattering limits the maximum imaging depth of two-photon fluorescence microscopy to the cortical layer within mouse brain, and imaging subcortical structures currently requires the removal of overlying brain tissue 3 or the insertion of optical probes 6 , 7 . Here, we demonstrate non-invasive, high-resolution, in vivo imaging of subcortical structures within an intact mouse brain using three-photon fluorescence microscopy at a spectral excitation window of 1,700 nm. Vascular structures as well as red fluorescent protein-labelled neurons within the mouse hippocampus are imaged. The combination of the long excitation wavelength and the higher-order nonlinear excitation overcomes the limitations of two-photon fluorescence microscopy, enabling biological investigations to take place at a greater depth within tissue. Three-photon microscopy performed at the infrared wavelength of 1,700 nm makes it possible to image hard-to-reach vascular structures and labelled neurons in the hippocampus of a mouse brain.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24353743</pmid><doi>10.1038/nphoton.2012.336</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2013-03, Vol.7 (3), p.205-209
issn 1749-4885
1749-4893
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3864872
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/624/1107/328/2057
639/624/1111/55
Applied and Technical Physics
Embryology
Fluorescence
Fluorescence microscopy
letter
Microscopy
Photonics
Physics
Quantum Physics
Tissues
title In vivo three-photon microscopy of subcortical structures within an intact mouse brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T06%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20three-photon%20microscopy%20of%20subcortical%20structures%20within%20an%20intact%20mouse%20brain&rft.jtitle=Nature%20photonics&rft.au=Horton,%20Nicholas%20G.&rft.date=2013-03-01&rft.volume=7&rft.issue=3&rft.spage=205&rft.epage=209&rft.pages=205-209&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/nphoton.2012.336&rft_dat=%3Cproquest_pubme%3E1323242492%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313238941&rft_id=info:pmid/24353743&rfr_iscdi=true